Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic interdependence of adenosine and dopamine receptors : Evidence from receptor knockout mice

Identifieur interne : 001C80 ( PascalFrancis/Curation ); précédent : 001C79; suivant : 001C81

Genetic interdependence of adenosine and dopamine receptors : Evidence from receptor knockout mice

Auteurs : J. L. Short [Australie] ; C. Ledent [Belgique] ; E. Borrelli [France] ; J. Drago [Australie] ; A. J. Lawrence [Australie]

Source :

RBID : Pascal:06-0244695

Descripteurs français

English descriptors

Abstract

Dopamine and adenosine receptors are known to share a considerable overlap in their regional distribution, being especially rich in the basal ganglia. Dopamine and adenosine receptors have been demonstrated to exhibit a parallel distribution on certain neuronal populations, and even when not directly co-localized, relationships (both antagonistic and synergistic) have been described. This study was designed to investigate dopaminergic and purinergic systems in mice with ablations of individual dopamine or adenosine receptors. In situ hybridization histochemistry and autoradiography was used to examine the level of mRNA and protein expression of specific receptors and transporters in dopaminergic pathways. Expression of the mRNA encoding the dopamine D2 receptor was elevated in the caudate putamen of D1, D3 and A2A receptor knockout mice; this was mirrored by an increase in D2 receptor protein in D1 and D3 receptor knockout mice, but not in A2A knockout mice. Dopamine D1 receptor binding was decreased in the caudate putamen, nucleus accumbens, olfactory tubercle and ventral pallidum of D2 receptor knockout mice. In substantia nigra pars compacta, dopamine transporter mRNA expression was dramatically decreased in D3 receptor knockout mice, but elevated in A2A receptor knockout mice. All dopamine receptor knockout mice examined exhibited increased A2A receptor binding in the caudate putamen, nucleus accumbens and olfactory tubercle. These data are consistent with the existence of functional interactions between dopaminergic and purinergic systems in these reward and motor-related brain regions.
pA  
A01 01  1    @0 0306-4522
A02 01      @0 NRSCDN
A03   1    @0 Neuroscience
A05       @2 139
A06       @2 2
A08 01  1  ENG  @1 Genetic interdependence of adenosine and dopamine receptors : Evidence from receptor knockout mice
A11 01  1    @1 SHORT (J. L.)
A11 02  1    @1 LEDENT (C.)
A11 03  1    @1 BORRELLI (E.)
A11 04  1    @1 DRAGO (J.)
A11 05  1    @1 LAWRENCE (A. J.)
A14 01      @1 Department of Pharmacology, Faculty of Medicine, Monash University @2 Clayton, Victoria 3800 @3 AUS @Z 1 aut.
A14 02      @1 Department of Pharmaceutical Biology and Pharmacology, Faculty of Pharmacy, Monash University @2 Parkville, Victoria 3052 @3 AUS @Z 1 aut.
A14 03      @1 Institut de Recherche Interdisciplinaire, Faculte de Medecine, Universite de Bruxelles @2 Brussels @3 BEL @Z 2 aut.
A14 04      @1 Department of Neurobiology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Universite de Strasbourg @2 Illkirch @3 FRA @Z 3 aut.
A14 05      @1 Brain Injury and Repair Group, Howard Florey Institute, University of Melbourne, Royal Parade @2 Parkville, Victoria 3010 @3 AUS @Z 4 aut. @Z 5 aut.
A20       @1 661-670
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 17194 @5 354000142741960200
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 06-0244695
A60       @1 P
A61       @0 A
A64 01  1    @0 Neuroscience
A66 01      @0 GBR
C01 01    ENG  @0 Dopamine and adenosine receptors are known to share a considerable overlap in their regional distribution, being especially rich in the basal ganglia. Dopamine and adenosine receptors have been demonstrated to exhibit a parallel distribution on certain neuronal populations, and even when not directly co-localized, relationships (both antagonistic and synergistic) have been described. This study was designed to investigate dopaminergic and purinergic systems in mice with ablations of individual dopamine or adenosine receptors. In situ hybridization histochemistry and autoradiography was used to examine the level of mRNA and protein expression of specific receptors and transporters in dopaminergic pathways. Expression of the mRNA encoding the dopamine D2 receptor was elevated in the caudate putamen of D1, D3 and A2A receptor knockout mice; this was mirrored by an increase in D2 receptor protein in D1 and D3 receptor knockout mice, but not in A2A knockout mice. Dopamine D1 receptor binding was decreased in the caudate putamen, nucleus accumbens, olfactory tubercle and ventral pallidum of D2 receptor knockout mice. In substantia nigra pars compacta, dopamine transporter mRNA expression was dramatically decreased in D3 receptor knockout mice, but elevated in A2A receptor knockout mice. All dopamine receptor knockout mice examined exhibited increased A2A receptor binding in the caudate putamen, nucleus accumbens and olfactory tubercle. These data are consistent with the existence of functional interactions between dopaminergic and purinergic systems in these reward and motor-related brain regions.
C02 01  X    @0 002A25
C03 01  X  FRE  @0 Récepteur adénosinique @5 01
C03 01  X  ENG  @0 Adenosine receptor @5 01
C03 01  X  SPA  @0 Receptor adenosínico @5 01
C03 02  X  FRE  @0 Récepteur dopaminergique @5 02
C03 02  X  ENG  @0 Dopamine receptor @5 02
C03 02  X  SPA  @0 Receptor dopaminérgico @5 02
C03 03  X  FRE  @0 Récepteur biologique @5 03
C03 03  X  ENG  @0 Biological receptor @5 03
C03 03  X  SPA  @0 Receptor biológico @5 03
C03 04  X  FRE  @0 Mutation @5 04
C03 04  X  ENG  @0 Mutation @5 04
C03 04  X  SPA  @0 Mutación @5 04
C03 05  X  FRE  @0 Dopamine @2 NK @2 FR @5 05
C03 05  X  ENG  @0 Dopamine @2 NK @2 FR @5 05
C03 05  X  SPA  @0 Dopamina @2 NK @2 FR @5 05
C03 06  X  FRE  @0 Récepteur dopaminergique D2 @5 06
C03 06  X  ENG  @0 D2 Dopamine receptor @5 06 @6 «D2» Dopamine receptor
C03 06  X  SPA  @0 Receptor dopaminérgico D2 @5 06
C03 07  X  FRE  @0 Récepteur dopaminergique D3 @5 07
C03 07  X  ENG  @0 D3 Dopamine receptor @5 07 @6 «D3» Dopamine receptor
C03 07  X  SPA  @0 Receptor dopaminérgico D3 @5 07
C03 08  X  FRE  @0 Récepteur adénosinique A2A @5 08
C03 08  X  ENG  @0 A2A adenosine receptor @5 08
C03 08  X  SPA  @0 Receptor adenosínico A2A @5 08
C03 09  X  FRE  @0 Protéine transport @5 10
C03 09  X  ENG  @0 Carrier protein @5 10
C03 09  X  SPA  @0 Proteína transportador @5 10
C03 10  X  FRE  @0 Souris @5 54
C03 10  X  ENG  @0 Mouse @5 54
C03 10  X  SPA  @0 Ratón @5 54
C03 11  X  FRE  @0 Animal @5 69
C03 11  X  ENG  @0 Animal @5 69
C03 11  X  SPA  @0 Animal @5 69
C07 01  X  FRE  @0 Catécholamine @5 20
C07 01  X  ENG  @0 Catecholamine @5 20
C07 01  X  SPA  @0 Catecolamina @5 20
C07 02  X  FRE  @0 Neurotransmetteur @5 21
C07 02  X  ENG  @0 Neurotransmitter @5 21
C07 02  X  SPA  @0 Neurotransmisor @5 21
C07 03  X  FRE  @0 Rodentia @2 NS
C07 03  X  ENG  @0 Rodentia @2 NS
C07 03  X  SPA  @0 Rodentia @2 NS
C07 04  X  FRE  @0 Mammalia @2 NS
C07 04  X  ENG  @0 Mammalia @2 NS
C07 04  X  SPA  @0 Mammalia @2 NS
C07 05  X  FRE  @0 Vertebrata @2 NS
C07 05  X  ENG  @0 Vertebrata @2 NS
C07 05  X  SPA  @0 Vertebrata @2 NS
N21       @1 156
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0244695

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Genetic interdependence of adenosine and dopamine receptors : Evidence from receptor knockout mice</title>
<author>
<name sortKey="Short, J L" sort="Short, J L" uniqKey="Short J" first="J. L." last="Short">J. L. Short</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Pharmacology, Faculty of Medicine, Monash University</s1>
<s2>Clayton, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Pharmaceutical Biology and Pharmacology, Faculty of Pharmacy, Monash University</s1>
<s2>Parkville, Victoria 3052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Ledent, C" sort="Ledent, C" uniqKey="Ledent C" first="C." last="Ledent">C. Ledent</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institut de Recherche Interdisciplinaire, Faculte de Medecine, Universite de Bruxelles</s1>
<s2>Brussels</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
</affiliation>
</author>
<author>
<name sortKey="Borrelli, E" sort="Borrelli, E" uniqKey="Borrelli E" first="E." last="Borrelli">E. Borrelli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Neurobiology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Universite de Strasbourg</s1>
<s2>Illkirch</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Drago, J" sort="Drago, J" uniqKey="Drago J" first="J." last="Drago">J. Drago</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Brain Injury and Repair Group, Howard Florey Institute, University of Melbourne, Royal Parade</s1>
<s2>Parkville, Victoria 3010</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Lawrence, A J" sort="Lawrence, A J" uniqKey="Lawrence A" first="A. J." last="Lawrence">A. J. Lawrence</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Brain Injury and Repair Group, Howard Florey Institute, University of Melbourne, Royal Parade</s1>
<s2>Parkville, Victoria 3010</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0244695</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0244695 INIST</idno>
<idno type="RBID">Pascal:06-0244695</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">004415</idno>
<idno type="wicri:Area/PascalFrancis/Curation">001C80</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Genetic interdependence of adenosine and dopamine receptors : Evidence from receptor knockout mice</title>
<author>
<name sortKey="Short, J L" sort="Short, J L" uniqKey="Short J" first="J. L." last="Short">J. L. Short</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Pharmacology, Faculty of Medicine, Monash University</s1>
<s2>Clayton, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Pharmaceutical Biology and Pharmacology, Faculty of Pharmacy, Monash University</s1>
<s2>Parkville, Victoria 3052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Ledent, C" sort="Ledent, C" uniqKey="Ledent C" first="C." last="Ledent">C. Ledent</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institut de Recherche Interdisciplinaire, Faculte de Medecine, Universite de Bruxelles</s1>
<s2>Brussels</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
</affiliation>
</author>
<author>
<name sortKey="Borrelli, E" sort="Borrelli, E" uniqKey="Borrelli E" first="E." last="Borrelli">E. Borrelli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Neurobiology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Universite de Strasbourg</s1>
<s2>Illkirch</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Drago, J" sort="Drago, J" uniqKey="Drago J" first="J." last="Drago">J. Drago</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Brain Injury and Repair Group, Howard Florey Institute, University of Melbourne, Royal Parade</s1>
<s2>Parkville, Victoria 3010</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Lawrence, A J" sort="Lawrence, A J" uniqKey="Lawrence A" first="A. J." last="Lawrence">A. J. Lawrence</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Brain Injury and Repair Group, Howard Florey Institute, University of Melbourne, Royal Parade</s1>
<s2>Parkville, Victoria 3010</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Neuroscience</title>
<title level="j" type="abbreviated">Neuroscience</title>
<idno type="ISSN">0306-4522</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Neuroscience</title>
<title level="j" type="abbreviated">Neuroscience</title>
<idno type="ISSN">0306-4522</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>A2A adenosine receptor</term>
<term>Adenosine receptor</term>
<term>Animal</term>
<term>Biological receptor</term>
<term>Carrier protein</term>
<term>D2 Dopamine receptor</term>
<term>D3 Dopamine receptor</term>
<term>Dopamine</term>
<term>Dopamine receptor</term>
<term>Mouse</term>
<term>Mutation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Récepteur adénosinique</term>
<term>Récepteur dopaminergique</term>
<term>Récepteur biologique</term>
<term>Mutation</term>
<term>Dopamine</term>
<term>Récepteur dopaminergique D2</term>
<term>Récepteur dopaminergique D3</term>
<term>Récepteur adénosinique A2A</term>
<term>Protéine transport</term>
<term>Souris</term>
<term>Animal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dopamine and adenosine receptors are known to share a considerable overlap in their regional distribution, being especially rich in the basal ganglia. Dopamine and adenosine receptors have been demonstrated to exhibit a parallel distribution on certain neuronal populations, and even when not directly co-localized, relationships (both antagonistic and synergistic) have been described. This study was designed to investigate dopaminergic and purinergic systems in mice with ablations of individual dopamine or adenosine receptors. In situ hybridization histochemistry and autoradiography was used to examine the level of mRNA and protein expression of specific receptors and transporters in dopaminergic pathways. Expression of the mRNA encoding the dopamine D
<sub>2</sub>
receptor was elevated in the caudate putamen of D
<sub>1</sub>
, D
<sub>3</sub>
and A
<sub>2A</sub>
receptor knockout mice; this was mirrored by an increase in D
<sub>2</sub>
receptor protein in D
<sub>1</sub>
and D
<sub>3</sub>
receptor knockout mice, but not in A
<sub>2A</sub>
knockout mice. Dopamine D
<sub>1</sub>
receptor binding was decreased in the caudate putamen, nucleus accumbens, olfactory tubercle and ventral pallidum of D
<sub>2</sub>
receptor knockout mice. In substantia nigra pars compacta, dopamine transporter mRNA expression was dramatically decreased in D
<sub>3</sub>
receptor knockout mice, but elevated in A
<sub>2A</sub>
receptor knockout mice. All dopamine receptor knockout mice examined exhibited increased A
<sub>2A</sub>
receptor binding in the caudate putamen, nucleus accumbens and olfactory tubercle. These data are consistent with the existence of functional interactions between dopaminergic and purinergic systems in these reward and motor-related brain regions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0306-4522</s0>
</fA01>
<fA02 i1="01">
<s0>NRSCDN</s0>
</fA02>
<fA03 i2="1">
<s0>Neuroscience</s0>
</fA03>
<fA05>
<s2>139</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Genetic interdependence of adenosine and dopamine receptors : Evidence from receptor knockout mice</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHORT (J. L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LEDENT (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BORRELLI (E.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DRAGO (J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LAWRENCE (A. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Pharmacology, Faculty of Medicine, Monash University</s1>
<s2>Clayton, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Pharmaceutical Biology and Pharmacology, Faculty of Pharmacy, Monash University</s1>
<s2>Parkville, Victoria 3052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institut de Recherche Interdisciplinaire, Faculte de Medecine, Universite de Bruxelles</s1>
<s2>Brussels</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Neurobiology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Universite de Strasbourg</s1>
<s2>Illkirch</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Brain Injury and Repair Group, Howard Florey Institute, University of Melbourne, Royal Parade</s1>
<s2>Parkville, Victoria 3010</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>661-670</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17194</s2>
<s5>354000142741960200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0244695</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Neuroscience</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Dopamine and adenosine receptors are known to share a considerable overlap in their regional distribution, being especially rich in the basal ganglia. Dopamine and adenosine receptors have been demonstrated to exhibit a parallel distribution on certain neuronal populations, and even when not directly co-localized, relationships (both antagonistic and synergistic) have been described. This study was designed to investigate dopaminergic and purinergic systems in mice with ablations of individual dopamine or adenosine receptors. In situ hybridization histochemistry and autoradiography was used to examine the level of mRNA and protein expression of specific receptors and transporters in dopaminergic pathways. Expression of the mRNA encoding the dopamine D
<sub>2</sub>
receptor was elevated in the caudate putamen of D
<sub>1</sub>
, D
<sub>3</sub>
and A
<sub>2A</sub>
receptor knockout mice; this was mirrored by an increase in D
<sub>2</sub>
receptor protein in D
<sub>1</sub>
and D
<sub>3</sub>
receptor knockout mice, but not in A
<sub>2A</sub>
knockout mice. Dopamine D
<sub>1</sub>
receptor binding was decreased in the caudate putamen, nucleus accumbens, olfactory tubercle and ventral pallidum of D
<sub>2</sub>
receptor knockout mice. In substantia nigra pars compacta, dopamine transporter mRNA expression was dramatically decreased in D
<sub>3</sub>
receptor knockout mice, but elevated in A
<sub>2A</sub>
receptor knockout mice. All dopamine receptor knockout mice examined exhibited increased A
<sub>2A</sub>
receptor binding in the caudate putamen, nucleus accumbens and olfactory tubercle. These data are consistent with the existence of functional interactions between dopaminergic and purinergic systems in these reward and motor-related brain regions.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A25</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Récepteur adénosinique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Adenosine receptor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Receptor adenosínico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Récepteur dopaminergique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Dopamine receptor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Receptor dopaminérgico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Récepteur biologique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Biological receptor</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Receptor biológico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Mutation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Mutation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Mutación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dopamine</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Dopamine</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Dopamina</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Récepteur dopaminergique D2</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>D2 Dopamine receptor</s0>
<s5>06</s5>
<s6>«D2» Dopamine receptor</s6>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Receptor dopaminérgico D2</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Récepteur dopaminergique D3</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>D3 Dopamine receptor</s0>
<s5>07</s5>
<s6>«D3» Dopamine receptor</s6>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Receptor dopaminérgico D3</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Récepteur adénosinique A2A</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>A2A adenosine receptor</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Receptor adenosínico A2A</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Protéine transport</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Carrier protein</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Proteína transportador</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Souris</s0>
<s5>54</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Mouse</s0>
<s5>54</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Ratón</s0>
<s5>54</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Animal</s0>
<s5>69</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Animal</s0>
<s5>69</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Animal</s0>
<s5>69</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Catécholamine</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Catecholamine</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Catecolamina</s0>
<s5>20</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Neurotransmetteur</s0>
<s5>21</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Neurotransmitter</s0>
<s5>21</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Neurotransmisor</s0>
<s5>21</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fN21>
<s1>156</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C80 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 001C80 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:06-0244695
   |texte=   Genetic interdependence of adenosine and dopamine receptors : Evidence from receptor knockout mice
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024