Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Entropy, non-linearity and hierarchy in ecosystems

Identifieur interne : 001F39 ( PascalFrancis/Corpus ); précédent : 001F38; suivant : 001F40

Entropy, non-linearity and hierarchy in ecosystems

Auteurs : T. M. Addiscott

Source :

RBID : Pascal:11-0147618

Descripteurs français

English descriptors

Abstract

Soil-plant systems are open systems thermodynamically because they exchange both energy and matter with their surroundings. Thus they are properly described by the second and third of the three stages of thermodynamics defined by Prigogine and Stengers (1984). The second stage describes a system in which the flow is linearly related to the force. Such a system tends towards a steady state in which entropy production is minimized, but it depends on the capacity of the system for self-organization. In a third stage system, flow is non-linearly related to force, and the system can move far from equilibrium. This system maximizes entropy production but in so doing facilitates self-organization. The second stage system was suggested earlier to provide a useful analogue of the behaviour of natural and agricultural ecosystems subjected to perturbations, but it needs the capacity for self-organization. Considering an ecosystem as a hierarchy suggests that this capacity is provided by the soil population, which releases from dead plant matter nutrients such as nitrate, phosphate and cations needed for growth of new plants and the renewal of the whole ecosystem. This release of small molecules from macromolecules increases entropy, and the soil population maximizes entropy production by releasing nutrients and carbon dioxide as vigorously as conditions allow. In so doing it behaves as a third stage thermodynamic system. Other authors (Schneider and Kay, 1994, 1995) consider that it is the plants in an ecosystem that maximize entropy, mainly through transpiration, but studies on transpiration efficiency suggest that this is questionable.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0016-7061
A02 01      @0 GEDMAB
A03   1    @0 Geoderma : (Amst.)
A05       @2 160
A06       @2 1
A08 01  1  ENG  @1 Entropy, non-linearity and hierarchy in ecosystems
A09 01  1  ENG  @1 Complexity and Nonlinearity in Soils
A11 01  1    @1 ADDISCOTT (T. M.)
A12 01  1    @1 TARQUIS (A. M.) @9 ed.
A12 02  1    @1 BIRD (N. R. A.) @9 ed.
A12 03  1    @1 PERRIER (E. M. A.) @9 ed.
A12 04  1    @1 CRAWFORD (J. W.) @9 ed.
A14 01      @1 Rothamsted Research @2 Harpenden, Herts, AL5 2JQ @3 GBR @Z 1 aut.
A15 01      @1 Judith and David Coffey Chair, Faculty of Agriculture Food and Natural Resources, University of Sydney @2 Sydney 2006 @3 AUS @Z 4 aut.
A15 02      @1 Departamento de Matemática Aplicada, Universidad Politécnica de Madrid @2 28040 Madrid @3 ESP @Z 1 aut.
A15 03      @1 Department of Soil Science, Rothamsted Research @2 Harpenden, Herts, AL5 2JQ @3 GBR @Z 2 aut.
A15 04      @1 Unité de Recherches GEODES UR079, Centre IRD Ile de France @2 93143 Bondy @3 FRA @Z 3 aut.
A20       @1 57-63
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 3607 @5 354000194339950070
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 1/2 p.
A47 01  1    @0 11-0147618
A60       @1 P
A61       @0 A
A64 01  1    @0 Geoderma : (Amsterdam)
A66 01      @0 NLD
C01 01    ENG  @0 Soil-plant systems are open systems thermodynamically because they exchange both energy and matter with their surroundings. Thus they are properly described by the second and third of the three stages of thermodynamics defined by Prigogine and Stengers (1984). The second stage describes a system in which the flow is linearly related to the force. Such a system tends towards a steady state in which entropy production is minimized, but it depends on the capacity of the system for self-organization. In a third stage system, flow is non-linearly related to force, and the system can move far from equilibrium. This system maximizes entropy production but in so doing facilitates self-organization. The second stage system was suggested earlier to provide a useful analogue of the behaviour of natural and agricultural ecosystems subjected to perturbations, but it needs the capacity for self-organization. Considering an ecosystem as a hierarchy suggests that this capacity is provided by the soil population, which releases from dead plant matter nutrients such as nitrate, phosphate and cations needed for growth of new plants and the renewal of the whole ecosystem. This release of small molecules from macromolecules increases entropy, and the soil population maximizes entropy production by releasing nutrients and carbon dioxide as vigorously as conditions allow. In so doing it behaves as a third stage thermodynamic system. Other authors (Schneider and Kay, 1994, 1995) consider that it is the plants in an ecosystem that maximize entropy, mainly through transpiration, but studies on transpiration efficiency suggest that this is questionable.
C02 01  X    @0 002A32
C02 02  2    @0 001E01P03
C02 03  2    @0 226C03
C03 01  2  FRE  @0 Entropie @5 01
C03 01  2  ENG  @0 entropy @5 01
C03 01  2  SPA  @0 Entropía @5 01
C03 02  X  FRE  @0 Hiérarchie @5 03
C03 02  X  ENG  @0 Hierarchy @5 03
C03 02  X  SPA  @0 Jerarquía @5 03
C03 03  2  FRE  @0 Ecosystème @5 04
C03 03  2  ENG  @0 ecosystems @5 04
C03 03  2  SPA  @0 Ecosistema @5 04
C03 04  X  FRE  @0 Relation sol plante @5 05
C03 04  X  ENG  @0 Soil plant relation @5 05
C03 04  X  SPA  @0 Relación suelo planta @5 05
C03 05  X  FRE  @0 Système biologique @5 06
C03 05  X  ENG  @0 Biological system @5 06
C03 05  X  SPA  @0 Sistema biológico @5 06
C03 06  2  FRE  @0 Système ouvert @5 07
C03 06  2  ENG  @0 open systems @5 07
C03 06  2  SPA  @0 Sistema abierto @5 07
C03 07  2  FRE  @0 Thermodynamique @5 09
C03 07  2  ENG  @0 thermodynamics @5 09
C03 07  2  SPA  @0 Termodinámica @5 09
C03 08  2  FRE  @0 Régime permanent @5 10
C03 08  2  ENG  @0 steady regimes @5 10
C03 08  2  SPA  @0 Régimen permanente @5 10
C03 09  X  FRE  @0 Agroécosystème @5 19
C03 09  X  ENG  @0 Agroecosystem @5 19
C03 09  X  SPA  @0 Agroecosistema @5 19
C03 10  X  FRE  @0 Perturbation @5 20
C03 10  X  ENG  @0 Perturbation @5 20
C03 10  X  SPA  @0 Perturbación @5 20
C03 11  2  FRE  @0 Sol @2 NT @5 21
C03 11  2  ENG  @0 soils @2 NT @5 21
C03 11  2  SPA  @0 Suelo @2 NT @5 21
C03 12  2  FRE  @0 Population statistique @5 22
C03 12  2  ENG  @0 populations @5 22
C03 12  2  SPA  @0 Población estadística @5 22
C03 13  2  FRE  @0 Elément nutritif @5 25
C03 13  2  ENG  @0 nutrients @5 25
C03 13  2  SPA  @0 Nutriente @5 25
N21       @1 094

Format Inist (serveur)

NO : PASCAL 11-0147618 INIST
ET : Entropy, non-linearity and hierarchy in ecosystems
AU : ADDISCOTT (T. M.); TARQUIS (A. M.); BIRD (N. R. A.); PERRIER (E. M. A.); CRAWFORD (J. W.)
AF : Rothamsted Research/Harpenden, Herts, AL5 2JQ/Royaume-Uni (1 aut.); Judith and David Coffey Chair, Faculty of Agriculture Food and Natural Resources, University of Sydney/Sydney 2006/Australie (4 aut.); Departamento de Matemática Aplicada, Universidad Politécnica de Madrid/28040 Madrid/Espagne (1 aut.); Department of Soil Science, Rothamsted Research/Harpenden, Herts, AL5 2JQ/Royaume-Uni (2 aut.); Unité de Recherches GEODES UR079, Centre IRD Ile de France/93143 Bondy/France (3 aut.)
DT : Publication en série; Niveau analytique
SO : Geoderma : (Amsterdam); ISSN 0016-7061; Coden GEDMAB; Pays-Bas; Da. 2010; Vol. 160; No. 1; Pp. 57-63; Bibl. 1/2 p.
LA : Anglais
EA : Soil-plant systems are open systems thermodynamically because they exchange both energy and matter with their surroundings. Thus they are properly described by the second and third of the three stages of thermodynamics defined by Prigogine and Stengers (1984). The second stage describes a system in which the flow is linearly related to the force. Such a system tends towards a steady state in which entropy production is minimized, but it depends on the capacity of the system for self-organization. In a third stage system, flow is non-linearly related to force, and the system can move far from equilibrium. This system maximizes entropy production but in so doing facilitates self-organization. The second stage system was suggested earlier to provide a useful analogue of the behaviour of natural and agricultural ecosystems subjected to perturbations, but it needs the capacity for self-organization. Considering an ecosystem as a hierarchy suggests that this capacity is provided by the soil population, which releases from dead plant matter nutrients such as nitrate, phosphate and cations needed for growth of new plants and the renewal of the whole ecosystem. This release of small molecules from macromolecules increases entropy, and the soil population maximizes entropy production by releasing nutrients and carbon dioxide as vigorously as conditions allow. In so doing it behaves as a third stage thermodynamic system. Other authors (Schneider and Kay, 1994, 1995) consider that it is the plants in an ecosystem that maximize entropy, mainly through transpiration, but studies on transpiration efficiency suggest that this is questionable.
CC : 002A32; 001E01P03; 226C03
FD : Entropie; Hiérarchie; Ecosystème; Relation sol plante; Système biologique; Système ouvert; Thermodynamique; Régime permanent; Agroécosystème; Perturbation; Sol; Population statistique; Elément nutritif
ED : entropy; Hierarchy; ecosystems; Soil plant relation; Biological system; open systems; thermodynamics; steady regimes; Agroecosystem; Perturbation; soils; populations; nutrients
SD : Entropía; Jerarquía; Ecosistema; Relación suelo planta; Sistema biológico; Sistema abierto; Termodinámica; Régimen permanente; Agroecosistema; Perturbación; Suelo; Población estadística; Nutriente
LO : INIST-3607.354000194339950070
ID : 11-0147618

Links to Exploration step

Pascal:11-0147618

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Entropy, non-linearity and hierarchy in ecosystems</title>
<author>
<name sortKey="Addiscott, T M" sort="Addiscott, T M" uniqKey="Addiscott T" first="T. M." last="Addiscott">T. M. Addiscott</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Rothamsted Research</s1>
<s2>Harpenden, Herts, AL5 2JQ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0147618</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0147618 INIST</idno>
<idno type="RBID">Pascal:11-0147618</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001F39</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Entropy, non-linearity and hierarchy in ecosystems</title>
<author>
<name sortKey="Addiscott, T M" sort="Addiscott, T M" uniqKey="Addiscott T" first="T. M." last="Addiscott">T. M. Addiscott</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Rothamsted Research</s1>
<s2>Harpenden, Herts, AL5 2JQ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Geoderma : (Amsterdam)</title>
<title level="j" type="abbreviated">Geoderma : (Amst.)</title>
<idno type="ISSN">0016-7061</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Geoderma : (Amsterdam)</title>
<title level="j" type="abbreviated">Geoderma : (Amst.)</title>
<idno type="ISSN">0016-7061</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agroecosystem</term>
<term>Biological system</term>
<term>Hierarchy</term>
<term>Perturbation</term>
<term>Soil plant relation</term>
<term>ecosystems</term>
<term>entropy</term>
<term>nutrients</term>
<term>open systems</term>
<term>populations</term>
<term>soils</term>
<term>steady regimes</term>
<term>thermodynamics</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Entropie</term>
<term>Hiérarchie</term>
<term>Ecosystème</term>
<term>Relation sol plante</term>
<term>Système biologique</term>
<term>Système ouvert</term>
<term>Thermodynamique</term>
<term>Régime permanent</term>
<term>Agroécosystème</term>
<term>Perturbation</term>
<term>Sol</term>
<term>Population statistique</term>
<term>Elément nutritif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soil-plant systems are open systems thermodynamically because they exchange both energy and matter with their surroundings. Thus they are properly described by the second and third of the three stages of thermodynamics defined by Prigogine and Stengers (1984). The second stage describes a system in which the flow is linearly related to the force. Such a system tends towards a steady state in which entropy production is minimized, but it depends on the capacity of the system for self-organization. In a third stage system, flow is non-linearly related to force, and the system can move far from equilibrium. This system maximizes entropy production but in so doing facilitates self-organization. The second stage system was suggested earlier to provide a useful analogue of the behaviour of natural and agricultural ecosystems subjected to perturbations, but it needs the capacity for self-organization. Considering an ecosystem as a hierarchy suggests that this capacity is provided by the soil population, which releases from dead plant matter nutrients such as nitrate, phosphate and cations needed for growth of new plants and the renewal of the whole ecosystem. This release of small molecules from macromolecules increases entropy, and the soil population maximizes entropy production by releasing nutrients and carbon dioxide as vigorously as conditions allow. In so doing it behaves as a third stage thermodynamic system. Other authors (Schneider and Kay, 1994, 1995) consider that it is the plants in an ecosystem that maximize entropy, mainly through transpiration, but studies on transpiration efficiency suggest that this is questionable.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0016-7061</s0>
</fA01>
<fA02 i1="01">
<s0>GEDMAB</s0>
</fA02>
<fA03 i2="1">
<s0>Geoderma : (Amst.)</s0>
</fA03>
<fA05>
<s2>160</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Entropy, non-linearity and hierarchy in ecosystems</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Complexity and Nonlinearity in Soils</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ADDISCOTT (T. M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>TARQUIS (A. M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BIRD (N. R. A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>PERRIER (E. M. A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>CRAWFORD (J. W.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Rothamsted Research</s1>
<s2>Harpenden, Herts, AL5 2JQ</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Judith and David Coffey Chair, Faculty of Agriculture Food and Natural Resources, University of Sydney</s1>
<s2>Sydney 2006</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Departamento de Matemática Aplicada, Universidad Politécnica de Madrid</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Department of Soil Science, Rothamsted Research</s1>
<s2>Harpenden, Herts, AL5 2JQ</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Unité de Recherches GEODES UR079, Centre IRD Ile de France</s1>
<s2>93143 Bondy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>57-63</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3607</s2>
<s5>354000194339950070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/2 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0147618</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Geoderma : (Amsterdam)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Soil-plant systems are open systems thermodynamically because they exchange both energy and matter with their surroundings. Thus they are properly described by the second and third of the three stages of thermodynamics defined by Prigogine and Stengers (1984). The second stage describes a system in which the flow is linearly related to the force. Such a system tends towards a steady state in which entropy production is minimized, but it depends on the capacity of the system for self-organization. In a third stage system, flow is non-linearly related to force, and the system can move far from equilibrium. This system maximizes entropy production but in so doing facilitates self-organization. The second stage system was suggested earlier to provide a useful analogue of the behaviour of natural and agricultural ecosystems subjected to perturbations, but it needs the capacity for self-organization. Considering an ecosystem as a hierarchy suggests that this capacity is provided by the soil population, which releases from dead plant matter nutrients such as nitrate, phosphate and cations needed for growth of new plants and the renewal of the whole ecosystem. This release of small molecules from macromolecules increases entropy, and the soil population maximizes entropy production by releasing nutrients and carbon dioxide as vigorously as conditions allow. In so doing it behaves as a third stage thermodynamic system. Other authors (Schneider and Kay, 1994, 1995) consider that it is the plants in an ecosystem that maximize entropy, mainly through transpiration, but studies on transpiration efficiency suggest that this is questionable.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A32</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01P03</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>226C03</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Entropie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>entropy</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Entropía</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Hiérarchie</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Hierarchy</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Jerarquía</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Ecosystème</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>ecosystems</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Ecosistema</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Relation sol plante</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Soil plant relation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Relación suelo planta</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Système biologique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Biological system</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Sistema biológico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Système ouvert</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>open systems</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Sistema abierto</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Thermodynamique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>thermodynamics</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Termodinámica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Régime permanent</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>steady regimes</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Régimen permanente</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Agroécosystème</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Agroecosystem</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Agroecosistema</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Perturbation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Perturbation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Perturbación</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Sol</s0>
<s2>NT</s2>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>soils</s0>
<s2>NT</s2>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Suelo</s0>
<s2>NT</s2>
<s5>21</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Population statistique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>populations</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Población estadística</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Elément nutritif</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>nutrients</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Nutriente</s0>
<s5>25</s5>
</fC03>
<fN21>
<s1>094</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 11-0147618 INIST</NO>
<ET>Entropy, non-linearity and hierarchy in ecosystems</ET>
<AU>ADDISCOTT (T. M.); TARQUIS (A. M.); BIRD (N. R. A.); PERRIER (E. M. A.); CRAWFORD (J. W.)</AU>
<AF>Rothamsted Research/Harpenden, Herts, AL5 2JQ/Royaume-Uni (1 aut.); Judith and David Coffey Chair, Faculty of Agriculture Food and Natural Resources, University of Sydney/Sydney 2006/Australie (4 aut.); Departamento de Matemática Aplicada, Universidad Politécnica de Madrid/28040 Madrid/Espagne (1 aut.); Department of Soil Science, Rothamsted Research/Harpenden, Herts, AL5 2JQ/Royaume-Uni (2 aut.); Unité de Recherches GEODES UR079, Centre IRD Ile de France/93143 Bondy/France (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Geoderma : (Amsterdam); ISSN 0016-7061; Coden GEDMAB; Pays-Bas; Da. 2010; Vol. 160; No. 1; Pp. 57-63; Bibl. 1/2 p.</SO>
<LA>Anglais</LA>
<EA>Soil-plant systems are open systems thermodynamically because they exchange both energy and matter with their surroundings. Thus they are properly described by the second and third of the three stages of thermodynamics defined by Prigogine and Stengers (1984). The second stage describes a system in which the flow is linearly related to the force. Such a system tends towards a steady state in which entropy production is minimized, but it depends on the capacity of the system for self-organization. In a third stage system, flow is non-linearly related to force, and the system can move far from equilibrium. This system maximizes entropy production but in so doing facilitates self-organization. The second stage system was suggested earlier to provide a useful analogue of the behaviour of natural and agricultural ecosystems subjected to perturbations, but it needs the capacity for self-organization. Considering an ecosystem as a hierarchy suggests that this capacity is provided by the soil population, which releases from dead plant matter nutrients such as nitrate, phosphate and cations needed for growth of new plants and the renewal of the whole ecosystem. This release of small molecules from macromolecules increases entropy, and the soil population maximizes entropy production by releasing nutrients and carbon dioxide as vigorously as conditions allow. In so doing it behaves as a third stage thermodynamic system. Other authors (Schneider and Kay, 1994, 1995) consider that it is the plants in an ecosystem that maximize entropy, mainly through transpiration, but studies on transpiration efficiency suggest that this is questionable.</EA>
<CC>002A32; 001E01P03; 226C03</CC>
<FD>Entropie; Hiérarchie; Ecosystème; Relation sol plante; Système biologique; Système ouvert; Thermodynamique; Régime permanent; Agroécosystème; Perturbation; Sol; Population statistique; Elément nutritif</FD>
<ED>entropy; Hierarchy; ecosystems; Soil plant relation; Biological system; open systems; thermodynamics; steady regimes; Agroecosystem; Perturbation; soils; populations; nutrients</ED>
<SD>Entropía; Jerarquía; Ecosistema; Relación suelo planta; Sistema biológico; Sistema abierto; Termodinámica; Régimen permanente; Agroecosistema; Perturbación; Suelo; Población estadística; Nutriente</SD>
<LO>INIST-3607.354000194339950070</LO>
<ID>11-0147618</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F39 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001F39 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0147618
   |texte=   Entropy, non-linearity and hierarchy in ecosystems
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024