Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability

Identifieur interne : 001F38 ( PascalFrancis/Corpus ); précédent : 001F37; suivant : 001F39

Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability

Auteurs : J. Paz Ferreiro ; E. Vidal Vazquez

Source :

RBID : Pascal:11-0147619

Descripteurs français

English descriptors

Abstract

Parameters are needed to recognize and monitor changes in pore size distributions (PSD) caused by factors such as differences in soil management systems or by disturbance of the soil structure. The objectives of this work were to evaluate the potential of multifractal parameters obtained from mercury injection porosimetry (MIP) curves to distinguish between two soils with contrasting structure stability indices and between distinct stages of the surface of these soils. Samples were collected from the uppermost surface layer of two agricultural soils, before and after simulated rainfall. The first soil was loamy textured, with 4.61% organic matter content and a mean weight diameter (MWD) of 2.136 mm. The second soil was a silty loam with 2.17% organic matter content and a MWD of 0.262 mm, highly susceptible to crusting. Crusted soil surfaces were produced by cumulative 260 mm and 140 mm simulated rainfall on the loamy and the silty loam soil, respectively. Ten replicated samples from the initial freshly-tilled and the crusted soil surfaces were analyzed. In the diameter range of 100-0.005 μm, the freshly-tilled surface of the loamy soil had a significantly (p<0.05) higher pore volume than its rain-disturbed counterpart, whereas the respective pore volume of the silty loam soil slightly increased following simulated rain. The scaling properties of PSDs measured by MIP could be fitted reasonably well with multifractal models. Generalized dimension spectrum, Dq, led to a better definition of multifractal scaling than singularity spectrum, f(α). Multifractal parameters such as Hölder exponent of order zero, α0, aperture of the left part of the singularity spectrum (α0q+), entropy dimension, D1, correlation dimension, D2, as well as indexes (D0-D1) and (D0-D2) were significantly different between the structurally stable loamy soil and the silty loam soil prone to crusting and between initial and rain-disturbed surface stages (p<0.05). Moreover, D1 and (D0-D1) were also significantly affected by the interaction between soil type and surface stage. Parameter α0 ranked as: loam initial1. Consequently, low structural stability or stability decay due to disaggregation by rainfall lead to clustering of PSDs measured by Hg intrusion porosimetry. These results show that multifractal analysis of PSDs may be an appropriate tool for characterizing soil structure stability and also a suitable indicator for assessing soil surface evolution stages.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0016-7061
A02 01      @0 GEDMAB
A03   1    @0 Geoderma : (Amst.)
A05       @2 160
A06       @2 1
A08 01  1  ENG  @1 Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability
A09 01  1  ENG  @1 Complexity and Nonlinearity in Soils
A11 01  1    @1 PAZ FERREIRO (J.)
A11 02  1    @1 VIDAL VAZQUEZ (E.)
A12 01  1    @1 TARQUIS (A. M.) @9 ed.
A12 02  1    @1 BIRD (N. R. A.) @9 ed.
A12 03  1    @1 PERRIER (E. M. A.) @9 ed.
A12 04  1    @1 CRAWFORD (J. W.) @9 ed.
A14 01      @1 Facultad de Ciencias, Universidade da Coruña @2 15071, Coruña @3 ESP @Z 1 aut. @Z 2 aut.
A15 01      @1 Judith and David Coffey Chair, Faculty of Agriculture Food and Natural Resources, University of Sydney @2 Sydney 2006 @3 AUS @Z 4 aut.
A15 02      @1 Departamento de Matemática Aplicada, Universidad Politécnica de Madrid @2 28040 Madrid @3 ESP @Z 1 aut.
A15 03      @1 Department of Soil Science, Rothamsted Research @2 Harpenden, Herts, AL5 2JQ @3 GBR @Z 2 aut.
A15 04      @1 Unité de Recherches GEODES UR079, Centre IRD Ile de France @2 93143 Bondy @3 FRA @Z 3 aut.
A20       @1 64-73
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 3607 @5 354000194339950080
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 11-0147619
A60       @1 P
A61       @0 A
A64 01  1    @0 Geoderma : (Amsterdam)
A66 01      @0 NLD
C01 01    ENG  @0 Parameters are needed to recognize and monitor changes in pore size distributions (PSD) caused by factors such as differences in soil management systems or by disturbance of the soil structure. The objectives of this work were to evaluate the potential of multifractal parameters obtained from mercury injection porosimetry (MIP) curves to distinguish between two soils with contrasting structure stability indices and between distinct stages of the surface of these soils. Samples were collected from the uppermost surface layer of two agricultural soils, before and after simulated rainfall. The first soil was loamy textured, with 4.61% organic matter content and a mean weight diameter (MWD) of 2.136 mm. The second soil was a silty loam with 2.17% organic matter content and a MWD of 0.262 mm, highly susceptible to crusting. Crusted soil surfaces were produced by cumulative 260 mm and 140 mm simulated rainfall on the loamy and the silty loam soil, respectively. Ten replicated samples from the initial freshly-tilled and the crusted soil surfaces were analyzed. In the diameter range of 100-0.005 μm, the freshly-tilled surface of the loamy soil had a significantly (p<0.05) higher pore volume than its rain-disturbed counterpart, whereas the respective pore volume of the silty loam soil slightly increased following simulated rain. The scaling properties of PSDs measured by MIP could be fitted reasonably well with multifractal models. Generalized dimension spectrum, Dq, led to a better definition of multifractal scaling than singularity spectrum, f(α). Multifractal parameters such as Hölder exponent of order zero, α0, aperture of the left part of the singularity spectrum (α0q+), entropy dimension, D1, correlation dimension, D2, as well as indexes (D0-D1) and (D0-D2) were significantly different between the structurally stable loamy soil and the silty loam soil prone to crusting and between initial and rain-disturbed surface stages (p<0.05). Moreover, D1 and (D0-D1) were also significantly affected by the interaction between soil type and surface stage. Parameter α0 ranked as: loam initial<loam rain-disturbed < silty loam initial < silty loam rain-disturbed, whereas the opposite rank was true for entropy dimension, D1. Consequently, low structural stability or stability decay due to disaggregation by rainfall lead to clustering of PSDs measured by Hg intrusion porosimetry. These results show that multifractal analysis of PSDs may be an appropriate tool for characterizing soil structure stability and also a suitable indicator for assessing soil surface evolution stages.
C02 01  X    @0 002A32
C02 02  2    @0 001E01P03
C02 03  2    @0 226C03
C03 01  X  FRE  @0 Système multifractal @5 01
C03 01  X  ENG  @0 Multifractal system @5 01
C03 01  X  SPA  @0 Sistema multifractal @5 01
C03 02  2  FRE  @0 Eau pluie @5 02
C03 02  2  ENG  @0 rain water @5 02
C03 02  2  SPA  @0 Agua llovediza @5 02
C03 03  X  FRE  @0 Dimension pore @5 03
C03 03  X  ENG  @0 Pore size @5 03
C03 03  X  SPA  @0 Dimensión poro @5 03
C03 04  2  FRE  @0 Distribution dimension @5 04
C03 04  2  ENG  @0 size distribution @5 04
C03 05  X  FRE  @0 Sol agricole @2 NT @5 05
C03 05  X  ENG  @0 Agricultural soil @2 NT @5 05
C03 05  X  SPA  @0 Suelo agrícola @2 NT @5 05
C03 06  X  FRE  @0 Stabilité structurale @5 06
C03 06  X  ENG  @0 Structure stability @5 06
C03 06  X  SPA  @0 Estabilidad estructural @5 06
C03 07  2  FRE  @0 Porosité @5 07
C03 07  2  ENG  @0 porosity @5 07
C03 07  2  SPA  @0 Porosidad @5 07
C03 08  2  FRE  @0 Aménagement sol @5 08
C03 08  2  ENG  @0 soil management @5 08
C03 08  2  SPA  @0 Acondicionamiento suelo @5 08
C03 09  X  FRE  @0 Structure sol @5 10
C03 09  X  ENG  @0 Soil structure @5 10
C03 09  X  SPA  @0 Estructura suelo @5 10
C03 10  2  FRE  @0 Mercure @5 11
C03 10  2  ENG  @0 mercury @5 11
C03 10  2  SPA  @0 Mercurio @5 11
C03 11  2  FRE  @0 Injection @5 12
C03 11  2  ENG  @0 injection @5 12
C03 11  2  SPA  @0 Inyección @5 12
C03 12  X  FRE  @0 Couche superficielle @5 15
C03 12  X  ENG  @0 Surface layer @5 15
C03 12  X  SPA  @0 Capa superficial @5 15
C03 13  2  FRE  @0 Pluie @5 17
C03 13  2  ENG  @0 rainfall @5 17
C03 13  2  SPA  @0 Lluvia @5 17
C03 14  2  FRE  @0 Matière organique @5 18
C03 14  2  ENG  @0 organic materials @5 18
C03 14  2  SPA  @0 Materia orgánica @5 18
C03 15  2  FRE  @0 Limon @5 20
C03 15  2  ENG  @0 loam @5 20
C03 15  2  SPA  @0 Lodo @5 20
C03 16  X  FRE  @0 Sensibilité résistance @5 21
C03 16  X  ENG  @0 Sensitivity resistance @5 21
C03 16  X  SPA  @0 Sensibilidad resistencia @5 21
C03 17  X  FRE  @0 Surface sol @5 23
C03 17  X  ENG  @0 Ground surface @5 23
C03 17  X  SPA  @0 Superficie suelo @5 23
C03 18  X  FRE  @0 Sol limoneux fin @2 NT @5 24
C03 18  X  ENG  @0 Silt loam soil @2 NT @5 24
C03 18  X  SPA  @0 Suelo franco limoso @2 NT @5 24
C03 19  2  FRE  @0 Till @5 25
C03 19  2  ENG  @0 till @5 25
C03 19  2  SPA  @0 Till @5 25
C03 20  2  FRE  @0 Espagne @2 NG @5 61
C03 20  2  ENG  @0 Spain @2 NG @5 61
C03 20  2  SPA  @0 España @2 NG @5 61
C03 21  2  FRE  @0 Galice @2 NG @5 62
C03 21  2  ENG  @0 Galicia Spain @2 NG @5 62
C03 21  2  SPA  @0 Galicia @2 NG @5 62
C07 01  2  FRE  @0 Péninsule Ibérique @2 NG
C07 01  2  ENG  @0 Iberian Peninsula @2 NG
C07 01  2  SPA  @0 Península ibérica @2 NG
C07 02  2  FRE  @0 Europe Sud @2 NG
C07 02  2  ENG  @0 Southern Europe @2 NG
C07 02  2  SPA  @0 Europa Sur @2 NG
C07 03  2  FRE  @0 Europe @2 564
C07 03  2  ENG  @0 Europe @2 564
C07 03  2  SPA  @0 Europa @2 564
N21       @1 094

Format Inist (serveur)

NO : PASCAL 11-0147619 INIST
ET : Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability
AU : PAZ FERREIRO (J.); VIDAL VAZQUEZ (E.); TARQUIS (A. M.); BIRD (N. R. A.); PERRIER (E. M. A.); CRAWFORD (J. W.)
AF : Facultad de Ciencias, Universidade da Coruña/15071, Coruña/Espagne (1 aut., 2 aut.); Judith and David Coffey Chair, Faculty of Agriculture Food and Natural Resources, University of Sydney/Sydney 2006/Australie (4 aut.); Departamento de Matemática Aplicada, Universidad Politécnica de Madrid/28040 Madrid/Espagne (1 aut.); Department of Soil Science, Rothamsted Research/Harpenden, Herts, AL5 2JQ/Royaume-Uni (2 aut.); Unité de Recherches GEODES UR079, Centre IRD Ile de France/93143 Bondy/France (3 aut.)
DT : Publication en série; Niveau analytique
SO : Geoderma : (Amsterdam); ISSN 0016-7061; Coden GEDMAB; Pays-Bas; Da. 2010; Vol. 160; No. 1; Pp. 64-73; Bibl. 3/4 p.
LA : Anglais
EA : Parameters are needed to recognize and monitor changes in pore size distributions (PSD) caused by factors such as differences in soil management systems or by disturbance of the soil structure. The objectives of this work were to evaluate the potential of multifractal parameters obtained from mercury injection porosimetry (MIP) curves to distinguish between two soils with contrasting structure stability indices and between distinct stages of the surface of these soils. Samples were collected from the uppermost surface layer of two agricultural soils, before and after simulated rainfall. The first soil was loamy textured, with 4.61% organic matter content and a mean weight diameter (MWD) of 2.136 mm. The second soil was a silty loam with 2.17% organic matter content and a MWD of 0.262 mm, highly susceptible to crusting. Crusted soil surfaces were produced by cumulative 260 mm and 140 mm simulated rainfall on the loamy and the silty loam soil, respectively. Ten replicated samples from the initial freshly-tilled and the crusted soil surfaces were analyzed. In the diameter range of 100-0.005 μm, the freshly-tilled surface of the loamy soil had a significantly (p<0.05) higher pore volume than its rain-disturbed counterpart, whereas the respective pore volume of the silty loam soil slightly increased following simulated rain. The scaling properties of PSDs measured by MIP could be fitted reasonably well with multifractal models. Generalized dimension spectrum, Dq, led to a better definition of multifractal scaling than singularity spectrum, f(α). Multifractal parameters such as Hölder exponent of order zero, α0, aperture of the left part of the singularity spectrum (α0q+), entropy dimension, D1, correlation dimension, D2, as well as indexes (D0-D1) and (D0-D2) were significantly different between the structurally stable loamy soil and the silty loam soil prone to crusting and between initial and rain-disturbed surface stages (p<0.05). Moreover, D1 and (D0-D1) were also significantly affected by the interaction between soil type and surface stage. Parameter α0 ranked as: loam initial<loam rain-disturbed < silty loam initial < silty loam rain-disturbed, whereas the opposite rank was true for entropy dimension, D1. Consequently, low structural stability or stability decay due to disaggregation by rainfall lead to clustering of PSDs measured by Hg intrusion porosimetry. These results show that multifractal analysis of PSDs may be an appropriate tool for characterizing soil structure stability and also a suitable indicator for assessing soil surface evolution stages.
CC : 002A32; 001E01P03; 226C03
FD : Système multifractal; Eau pluie; Dimension pore; Distribution dimension; Sol agricole; Stabilité structurale; Porosité; Aménagement sol; Structure sol; Mercure; Injection; Couche superficielle; Pluie; Matière organique; Limon; Sensibilité résistance; Surface sol; Sol limoneux fin; Till; Espagne; Galice
FG : Péninsule Ibérique; Europe Sud; Europe
ED : Multifractal system; rain water; Pore size; size distribution; Agricultural soil; Structure stability; porosity; soil management; Soil structure; mercury; injection; Surface layer; rainfall; organic materials; loam; Sensitivity resistance; Ground surface; Silt loam soil; till; Spain; Galicia Spain
EG : Iberian Peninsula; Southern Europe; Europe
SD : Sistema multifractal; Agua llovediza; Dimensión poro; Suelo agrícola; Estabilidad estructural; Porosidad; Acondicionamiento suelo; Estructura suelo; Mercurio; Inyección; Capa superficial; Lluvia; Materia orgánica; Lodo; Sensibilidad resistencia; Superficie suelo; Suelo franco limoso; Till; España; Galicia
LO : INIST-3607.354000194339950080
ID : 11-0147619

Links to Exploration step

Pascal:11-0147619

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability</title>
<author>
<name sortKey="Paz Ferreiro, J" sort="Paz Ferreiro, J" uniqKey="Paz Ferreiro J" first="J." last="Paz Ferreiro">J. Paz Ferreiro</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Facultad de Ciencias, Universidade da Coruña</s1>
<s2>15071, Coruña</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vidal Vazquez, E" sort="Vidal Vazquez, E" uniqKey="Vidal Vazquez E" first="E." last="Vidal Vazquez">E. Vidal Vazquez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Facultad de Ciencias, Universidade da Coruña</s1>
<s2>15071, Coruña</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0147619</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0147619 INIST</idno>
<idno type="RBID">Pascal:11-0147619</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001F38</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability</title>
<author>
<name sortKey="Paz Ferreiro, J" sort="Paz Ferreiro, J" uniqKey="Paz Ferreiro J" first="J." last="Paz Ferreiro">J. Paz Ferreiro</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Facultad de Ciencias, Universidade da Coruña</s1>
<s2>15071, Coruña</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vidal Vazquez, E" sort="Vidal Vazquez, E" uniqKey="Vidal Vazquez E" first="E." last="Vidal Vazquez">E. Vidal Vazquez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Facultad de Ciencias, Universidade da Coruña</s1>
<s2>15071, Coruña</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Geoderma : (Amsterdam)</title>
<title level="j" type="abbreviated">Geoderma : (Amst.)</title>
<idno type="ISSN">0016-7061</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Geoderma : (Amsterdam)</title>
<title level="j" type="abbreviated">Geoderma : (Amst.)</title>
<idno type="ISSN">0016-7061</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agricultural soil</term>
<term>Galicia Spain</term>
<term>Ground surface</term>
<term>Multifractal system</term>
<term>Pore size</term>
<term>Sensitivity resistance</term>
<term>Silt loam soil</term>
<term>Soil structure</term>
<term>Spain</term>
<term>Structure stability</term>
<term>Surface layer</term>
<term>injection</term>
<term>loam</term>
<term>mercury</term>
<term>organic materials</term>
<term>porosity</term>
<term>rain water</term>
<term>rainfall</term>
<term>size distribution</term>
<term>soil management</term>
<term>till</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Système multifractal</term>
<term>Eau pluie</term>
<term>Dimension pore</term>
<term>Distribution dimension</term>
<term>Sol agricole</term>
<term>Stabilité structurale</term>
<term>Porosité</term>
<term>Aménagement sol</term>
<term>Structure sol</term>
<term>Mercure</term>
<term>Injection</term>
<term>Couche superficielle</term>
<term>Pluie</term>
<term>Matière organique</term>
<term>Limon</term>
<term>Sensibilité résistance</term>
<term>Surface sol</term>
<term>Sol limoneux fin</term>
<term>Till</term>
<term>Espagne</term>
<term>Galice</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Parameters are needed to recognize and monitor changes in pore size distributions (PSD) caused by factors such as differences in soil management systems or by disturbance of the soil structure. The objectives of this work were to evaluate the potential of multifractal parameters obtained from mercury injection porosimetry (MIP) curves to distinguish between two soils with contrasting structure stability indices and between distinct stages of the surface of these soils. Samples were collected from the uppermost surface layer of two agricultural soils, before and after simulated rainfall. The first soil was loamy textured, with 4.61% organic matter content and a mean weight diameter (MWD) of 2.136 mm. The second soil was a silty loam with 2.17% organic matter content and a MWD of 0.262 mm, highly susceptible to crusting. Crusted soil surfaces were produced by cumulative 260 mm and 140 mm simulated rainfall on the loamy and the silty loam soil, respectively. Ten replicated samples from the initial freshly-tilled and the crusted soil surfaces were analyzed. In the diameter range of 100-0.005 μm, the freshly-tilled surface of the loamy soil had a significantly (p<0.05) higher pore volume than its rain-disturbed counterpart, whereas the respective pore volume of the silty loam soil slightly increased following simulated rain. The scaling properties of PSDs measured by MIP could be fitted reasonably well with multifractal models. Generalized dimension spectrum, Dq, led to a better definition of multifractal scaling than singularity spectrum, f(α). Multifractal parameters such as Hölder exponent of order zero, α
<sub>0</sub>
, aperture of the left part of the singularity spectrum (α
<sub>0</sub>
<sub>q+</sub>
), entropy dimension, D
<sub>1</sub>
, correlation dimension, D
<sub>2</sub>
, as well as indexes (D
<sub>0</sub>
-D
<sub>1</sub>
) and (D
<sub>0</sub>
-D
<sub>2</sub>
) were significantly different between the structurally stable loamy soil and the silty loam soil prone to crusting and between initial and rain-disturbed surface stages (p<0.05). Moreover, D
<sub>1</sub>
and (D
<sub>0</sub>
-D
<sub>1</sub>
) were also significantly affected by the interaction between soil type and surface stage. Parameter α
<sub>0</sub>
ranked as: loam initial<sub>1</sub>
. Consequently, low structural stability or stability decay due to disaggregation by rainfall lead to clustering of PSDs measured by Hg intrusion porosimetry. These results show that multifractal analysis of PSDs may be an appropriate tool for characterizing soil structure stability and also a suitable indicator for assessing soil surface evolution stages.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0016-7061</s0>
</fA01>
<fA02 i1="01">
<s0>GEDMAB</s0>
</fA02>
<fA03 i2="1">
<s0>Geoderma : (Amst.)</s0>
</fA03>
<fA05>
<s2>160</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Complexity and Nonlinearity in Soils</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>PAZ FERREIRO (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>VIDAL VAZQUEZ (E.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>TARQUIS (A. M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BIRD (N. R. A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>PERRIER (E. M. A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>CRAWFORD (J. W.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Facultad de Ciencias, Universidade da Coruña</s1>
<s2>15071, Coruña</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Judith and David Coffey Chair, Faculty of Agriculture Food and Natural Resources, University of Sydney</s1>
<s2>Sydney 2006</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Departamento de Matemática Aplicada, Universidad Politécnica de Madrid</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Department of Soil Science, Rothamsted Research</s1>
<s2>Harpenden, Herts, AL5 2JQ</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Unité de Recherches GEODES UR079, Centre IRD Ile de France</s1>
<s2>93143 Bondy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>64-73</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3607</s2>
<s5>354000194339950080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0147619</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Geoderma : (Amsterdam)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Parameters are needed to recognize and monitor changes in pore size distributions (PSD) caused by factors such as differences in soil management systems or by disturbance of the soil structure. The objectives of this work were to evaluate the potential of multifractal parameters obtained from mercury injection porosimetry (MIP) curves to distinguish between two soils with contrasting structure stability indices and between distinct stages of the surface of these soils. Samples were collected from the uppermost surface layer of two agricultural soils, before and after simulated rainfall. The first soil was loamy textured, with 4.61% organic matter content and a mean weight diameter (MWD) of 2.136 mm. The second soil was a silty loam with 2.17% organic matter content and a MWD of 0.262 mm, highly susceptible to crusting. Crusted soil surfaces were produced by cumulative 260 mm and 140 mm simulated rainfall on the loamy and the silty loam soil, respectively. Ten replicated samples from the initial freshly-tilled and the crusted soil surfaces were analyzed. In the diameter range of 100-0.005 μm, the freshly-tilled surface of the loamy soil had a significantly (p<0.05) higher pore volume than its rain-disturbed counterpart, whereas the respective pore volume of the silty loam soil slightly increased following simulated rain. The scaling properties of PSDs measured by MIP could be fitted reasonably well with multifractal models. Generalized dimension spectrum, Dq, led to a better definition of multifractal scaling than singularity spectrum, f(α). Multifractal parameters such as Hölder exponent of order zero, α
<sub>0</sub>
, aperture of the left part of the singularity spectrum (α
<sub>0</sub>
<sub>q+</sub>
), entropy dimension, D
<sub>1</sub>
, correlation dimension, D
<sub>2</sub>
, as well as indexes (D
<sub>0</sub>
-D
<sub>1</sub>
) and (D
<sub>0</sub>
-D
<sub>2</sub>
) were significantly different between the structurally stable loamy soil and the silty loam soil prone to crusting and between initial and rain-disturbed surface stages (p<0.05). Moreover, D
<sub>1</sub>
and (D
<sub>0</sub>
-D
<sub>1</sub>
) were also significantly affected by the interaction between soil type and surface stage. Parameter α
<sub>0</sub>
ranked as: loam initial<sub>1</sub>
. Consequently, low structural stability or stability decay due to disaggregation by rainfall lead to clustering of PSDs measured by Hg intrusion porosimetry. These results show that multifractal analysis of PSDs may be an appropriate tool for characterizing soil structure stability and also a suitable indicator for assessing soil surface evolution stages.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A32</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01P03</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>226C03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Système multifractal</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Multifractal system</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sistema multifractal</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Eau pluie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>rain water</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Agua llovediza</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dimension pore</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Pore size</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Dimensión poro</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Distribution dimension</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>size distribution</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Sol agricole</s0>
<s2>NT</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Agricultural soil</s0>
<s2>NT</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Suelo agrícola</s0>
<s2>NT</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Stabilité structurale</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Structure stability</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Estabilidad estructural</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Porosité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>porosity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Porosidad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Aménagement sol</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>soil management</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Acondicionamiento suelo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Structure sol</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Soil structure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estructura suelo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Mercure</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>mercury</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Mercurio</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Injection</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>injection</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Inyección</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Couche superficielle</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Surface layer</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Capa superficial</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Pluie</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>rainfall</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Lluvia</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Matière organique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>organic materials</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Materia orgánica</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Limon</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>loam</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Lodo</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Sensibilité résistance</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Sensitivity resistance</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Sensibilidad resistencia</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Surface sol</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Ground surface</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Superficie suelo</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Sol limoneux fin</s0>
<s2>NT</s2>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Silt loam soil</s0>
<s2>NT</s2>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Suelo franco limoso</s0>
<s2>NT</s2>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Till</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>till</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Till</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Espagne</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>Spain</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>España</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Galice</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>Galicia Spain</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Galicia</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Péninsule Ibérique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Iberian Peninsula</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Península ibérica</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Europe Sud</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>Southern Europe</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Europa Sur</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Europe</s0>
<s2>564</s2>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>Europe</s0>
<s2>564</s2>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Europa</s0>
<s2>564</s2>
</fC07>
<fN21>
<s1>094</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 11-0147619 INIST</NO>
<ET>Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability</ET>
<AU>PAZ FERREIRO (J.); VIDAL VAZQUEZ (E.); TARQUIS (A. M.); BIRD (N. R. A.); PERRIER (E. M. A.); CRAWFORD (J. W.)</AU>
<AF>Facultad de Ciencias, Universidade da Coruña/15071, Coruña/Espagne (1 aut., 2 aut.); Judith and David Coffey Chair, Faculty of Agriculture Food and Natural Resources, University of Sydney/Sydney 2006/Australie (4 aut.); Departamento de Matemática Aplicada, Universidad Politécnica de Madrid/28040 Madrid/Espagne (1 aut.); Department of Soil Science, Rothamsted Research/Harpenden, Herts, AL5 2JQ/Royaume-Uni (2 aut.); Unité de Recherches GEODES UR079, Centre IRD Ile de France/93143 Bondy/France (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Geoderma : (Amsterdam); ISSN 0016-7061; Coden GEDMAB; Pays-Bas; Da. 2010; Vol. 160; No. 1; Pp. 64-73; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>Parameters are needed to recognize and monitor changes in pore size distributions (PSD) caused by factors such as differences in soil management systems or by disturbance of the soil structure. The objectives of this work were to evaluate the potential of multifractal parameters obtained from mercury injection porosimetry (MIP) curves to distinguish between two soils with contrasting structure stability indices and between distinct stages of the surface of these soils. Samples were collected from the uppermost surface layer of two agricultural soils, before and after simulated rainfall. The first soil was loamy textured, with 4.61% organic matter content and a mean weight diameter (MWD) of 2.136 mm. The second soil was a silty loam with 2.17% organic matter content and a MWD of 0.262 mm, highly susceptible to crusting. Crusted soil surfaces were produced by cumulative 260 mm and 140 mm simulated rainfall on the loamy and the silty loam soil, respectively. Ten replicated samples from the initial freshly-tilled and the crusted soil surfaces were analyzed. In the diameter range of 100-0.005 μm, the freshly-tilled surface of the loamy soil had a significantly (p<0.05) higher pore volume than its rain-disturbed counterpart, whereas the respective pore volume of the silty loam soil slightly increased following simulated rain. The scaling properties of PSDs measured by MIP could be fitted reasonably well with multifractal models. Generalized dimension spectrum, Dq, led to a better definition of multifractal scaling than singularity spectrum, f(α). Multifractal parameters such as Hölder exponent of order zero, α
<sub>0</sub>
, aperture of the left part of the singularity spectrum (α
<sub>0</sub>
<sub>q+</sub>
), entropy dimension, D
<sub>1</sub>
, correlation dimension, D
<sub>2</sub>
, as well as indexes (D
<sub>0</sub>
-D
<sub>1</sub>
) and (D
<sub>0</sub>
-D
<sub>2</sub>
) were significantly different between the structurally stable loamy soil and the silty loam soil prone to crusting and between initial and rain-disturbed surface stages (p<0.05). Moreover, D
<sub>1</sub>
and (D
<sub>0</sub>
-D
<sub>1</sub>
) were also significantly affected by the interaction between soil type and surface stage. Parameter α
<sub>0</sub>
ranked as: loam initial<sub>1</sub>
. Consequently, low structural stability or stability decay due to disaggregation by rainfall lead to clustering of PSDs measured by Hg intrusion porosimetry. These results show that multifractal analysis of PSDs may be an appropriate tool for characterizing soil structure stability and also a suitable indicator for assessing soil surface evolution stages.</EA>
<CC>002A32; 001E01P03; 226C03</CC>
<FD>Système multifractal; Eau pluie; Dimension pore; Distribution dimension; Sol agricole; Stabilité structurale; Porosité; Aménagement sol; Structure sol; Mercure; Injection; Couche superficielle; Pluie; Matière organique; Limon; Sensibilité résistance; Surface sol; Sol limoneux fin; Till; Espagne; Galice</FD>
<FG>Péninsule Ibérique; Europe Sud; Europe</FG>
<ED>Multifractal system; rain water; Pore size; size distribution; Agricultural soil; Structure stability; porosity; soil management; Soil structure; mercury; injection; Surface layer; rainfall; organic materials; loam; Sensitivity resistance; Ground surface; Silt loam soil; till; Spain; Galicia Spain</ED>
<EG>Iberian Peninsula; Southern Europe; Europe</EG>
<SD>Sistema multifractal; Agua llovediza; Dimensión poro; Suelo agrícola; Estabilidad estructural; Porosidad; Acondicionamiento suelo; Estructura suelo; Mercurio; Inyección; Capa superficial; Lluvia; Materia orgánica; Lodo; Sensibilidad resistencia; Superficie suelo; Suelo franco limoso; Till; España; Galicia</SD>
<LO>INIST-3607.354000194339950080</LO>
<ID>11-0147619</ID>
</server>
</inist></record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F38 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001F38 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0147619
   |texte=   Multifractal analysis of Hg pore size distributions in soils with contrasting structural stability
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024