Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High di-electric constant nano-structure ceramics synthesis using novel electric discharge assisted mechanical milling and magneto ball milling and its properties

Identifieur interne : 004131 ( Main/Exploration ); précédent : 004130; suivant : 004132

High di-electric constant nano-structure ceramics synthesis using novel electric discharge assisted mechanical milling and magneto ball milling and its properties

Auteurs : A. A. Chowdhury [Australie] ; A. Calka [Australie] ; D. Wexler [Australie] ; K. Konstantinov [Australie]

Source :

RBID : Pascal:15-0016262

Descripteurs français

English descriptors

Abstract

The conventional method to prepare functional oxides is ceramic-powder-based processing typically via solid-state reaction of microcrystalline starting powders at high temperatures. Disadvantages of this approach include the high temperatures of reaction, limited degree of product chemical homogeneity and difficulties in achieving rapid sintering. Various chemical-based processing routes have been developed to prepare powders of more homogeneous composition, improved reactivity and sintering ability at low temperatures. Regardless of the route chosen to synthesise complex oxides, almost all of them require lengthy heat treatment schedules that usually exceed 10 h, as well as multi-stage processing steps. We describe two approaches to address these problems, applied to successful synthesis of both MgAl2O4 and CaCu3Ti4O12 (CCT) oxides exhibiting excellent di-electric properties. One approach employed the novel direct synthesis technique of electric discharge assisted mechanical milling (EDAMM) and the second used the more conventional method of controlled ball milling using the magneto-mechanical method followed by heat treatment of nano-structural products. By using EDAMM, nano-crystalline precursors for transformation into high di-electric constant ceramics could be formed in as little as 0.1% of the processing time required for conventional solid-state techniques while ball milling using the magneto method also resulted in nano-structural precursors powders suitable for reaction by heat treatment to form oxide supercapacitor. Sample characterisation was carried out using XRD, TEM and SEM. Di-electric property measurements were performed using AC-LCR and by DC meters.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High di-electric constant nano-structure ceramics synthesis using novel electric discharge assisted mechanical milling and magneto ball milling and its properties</title>
<author>
<name sortKey="Chowdhury, A A" sort="Chowdhury, A A" uniqKey="Chowdhury A" first="A. A." last="Chowdhury">A. A. Chowdhury</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Calka, A" sort="Calka, A" uniqKey="Calka A" first="A." last="Calka">A. Calka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wexler, D" sort="Wexler, D" uniqKey="Wexler D" first="D." last="Wexler">D. Wexler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Konstantinov, K" sort="Konstantinov, K" uniqKey="Konstantinov K" first="K." last="Konstantinov">K. Konstantinov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">15-0016262</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 15-0016262 INIST</idno>
<idno type="RBID">Pascal:15-0016262</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000119</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005D34</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000270</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000270</idno>
<idno type="wicri:doubleKey">1475-7435:2014:Chowdhury A:high:di:electric</idno>
<idno type="wicri:Area/Main/Merge">004194</idno>
<idno type="wicri:Area/Main/Curation">004131</idno>
<idno type="wicri:Area/Main/Exploration">004131</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">High di-electric constant nano-structure ceramics synthesis using novel electric discharge assisted mechanical milling and magneto ball milling and its properties</title>
<author>
<name sortKey="Chowdhury, A A" sort="Chowdhury, A A" uniqKey="Chowdhury A" first="A. A." last="Chowdhury">A. A. Chowdhury</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Calka, A" sort="Calka, A" uniqKey="Calka A" first="A." last="Calka">A. Calka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wexler, D" sort="Wexler, D" uniqKey="Wexler D" first="D." last="Wexler">D. Wexler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Konstantinov, K" sort="Konstantinov, K" uniqKey="Konstantinov K" first="K." last="Konstantinov">K. Konstantinov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>NSW 2522</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">International journal of nanotechnology</title>
<title level="j" type="abbreviated">Int. j. nanotechnol.</title>
<idno type="ISSN">1475-7435</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">International journal of nanotechnology</title>
<title level="j" type="abbreviated">Int. j. nanotechnol.</title>
<idno type="ISSN">1475-7435</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electric discharges</term>
<term>Heat treatments</term>
<term>Mechanical alloying</term>
<term>Nanopowder</term>
<term>Oxide ceramics</term>
<term>Precursor</term>
<term>Scanning electron microscopy</term>
<term>Sintering</term>
<term>Solid state reaction</term>
<term>Transmission electron microscopy</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Décharge électrique</term>
<term>Alliage mécanique</term>
<term>Céramique oxyde</term>
<term>Réaction état solide</term>
<term>Frittage</term>
<term>Traitement thermique</term>
<term>Précurseur</term>
<term>Nanopoudre</term>
<term>Diffraction RX</term>
<term>Microscopie électronique transmission</term>
<term>Microscopie électronique balayage</term>
<term>CaCu3Ti4O12</term>
<term>8107W</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The conventional method to prepare functional oxides is ceramic-powder-based processing typically via solid-state reaction of microcrystalline starting powders at high temperatures. Disadvantages of this approach include the high temperatures of reaction, limited degree of product chemical homogeneity and difficulties in achieving rapid sintering. Various chemical-based processing routes have been developed to prepare powders of more homogeneous composition, improved reactivity and sintering ability at low temperatures. Regardless of the route chosen to synthesise complex oxides, almost all of them require lengthy heat treatment schedules that usually exceed 10 h, as well as multi-stage processing steps. We describe two approaches to address these problems, applied to successful synthesis of both MgAl
<sub>2</sub>
O
<sub>4</sub>
and CaCu
<sub>3</sub>
Ti
<sub>4</sub>
O
<sub>12</sub>
(CCT) oxides exhibiting excellent di-electric properties. One approach employed the novel direct synthesis technique of electric discharge assisted mechanical milling (EDAMM) and the second used the more conventional method of controlled ball milling using the magneto-mechanical method followed by heat treatment of nano-structural products. By using EDAMM, nano-crystalline precursors for transformation into high di-electric constant ceramics could be formed in as little as 0.1% of the processing time required for conventional solid-state techniques while ball milling using the magneto method also resulted in nano-structural precursors powders suitable for reaction by heat treatment to form oxide supercapacitor. Sample characterisation was carried out using XRD, TEM and SEM. Di-electric property measurements were performed using AC-LCR and by DC meters.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Chowdhury, A A" sort="Chowdhury, A A" uniqKey="Chowdhury A" first="A. A." last="Chowdhury">A. A. Chowdhury</name>
</noRegion>
<name sortKey="Calka, A" sort="Calka, A" uniqKey="Calka A" first="A." last="Calka">A. Calka</name>
<name sortKey="Konstantinov, K" sort="Konstantinov, K" uniqKey="Konstantinov K" first="K." last="Konstantinov">K. Konstantinov</name>
<name sortKey="Wexler, D" sort="Wexler, D" uniqKey="Wexler D" first="D." last="Wexler">D. Wexler</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004131 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004131 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:15-0016262
   |texte=   High di-electric constant nano-structure ceramics synthesis using novel electric discharge assisted mechanical milling and magneto ball milling and its properties
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024