Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape

Identifieur interne : 004130 ( Main/Exploration ); précédent : 004129; suivant : 004131

High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape

Auteurs : Marine Lacoste [France] ; Budiman Minasny [Australie] ; Alex Mcbratney [Australie] ; Didier Michot [France] ; Valérie Viaud [France] ; Christian Walter [France]

Source :

RBID : Pascal:14-0046555

Descripteurs français

English descriptors

Abstract

Soil organic carbon (SOC) is a key element of agroecosystems functioning and has a crucial impact on global carbon storage. At the landscape scale, SOC spatial variability is strongly affected by natural and anthropogenic processes and linear anthropogenic elements (such hedges or ditches). This study aims at mapping SOC stocks distribution in the A-horizons for a depth up to 105 cm, at a high spatial resolution, for an area of 10 km2 in a heterogeneous agricultural landscape (North-Western France). We used a data mining tool, Cubist, to build rule-based predictive models and predict SOC content and soil bulk density (BD) from a calibration dataset at 8 standard layers (0 to 7.5 cm, 7.5 to 15 cm, 15 to 30 cm, 30 to 45 cm, 45 to 60 cm, 60 to 75 cm, 75 to 90 cm and 90 to 105 cm). For the models calibration, 70 sampling locations were selected within the whole study area using the conditioned Latin hypercube sampling method. Two independent validation datasets were used to assess the performance of the predictive models: (i) at landscape scale, 49 sampling locations were selected using stratified random sampling based on a 300-m square grid; (ii) at hedge vicinity, 112 sampling locations were selected along transects perpendicular to 14 purposively chosen hedges. Undisturbed samples were collected at fixed depths and analysed for BD and SOC content at each sampling location and continuous soil profiles were reconstructed using equal-area splines. Predictive environmental data consisted in attributes derived from a light detection and ranging digital elevation model (LiDAR DEM), geological variables, land use data and a predictive map of A-horizon thickness. Considering the two validation datasets (at landscape scale and hedge vicinity), root mean square errors (RMSE) of the predictions, computed for all the standard soil layers (up to a depth of 105 cm), were respectively 7.74 and 5.02 g kg-1 for SOC content, and 0.15 and 0.21 g cm-3 for BD. Best predictions were obtained for layers between 15 and 60 cm of depth. The SOC stocks were calculated over a depth of 105 cm by combining the prediction of SOC content and BD. The final maps show that the carbon stocks in the soil below 30 cm accounted for 33% of the total SOC stocks on average. The whole method produced consistent results between the two predicted soil properties. The final SOC stocks maps provide continuous data along soil profile up to 105 cm, which may be critical information for supporting carbon policy and management decisions.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape</title>
<author>
<name sortKey="Lacoste, Marine" sort="Lacoste, Marine" uniqKey="Lacoste M" first="Marine" last="Lacoste">Marine Lacoste</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRA, AGROCAMPUS OUEST, UMR1069, Sol Agro et hydrosystème Spatialisation</s1>
<s2>35000 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>35000 Rennes</wicri:noRegion>
<wicri:noRegion>Sol Agro et hydrosystème Spatialisation</wicri:noRegion>
<wicri:noRegion>35000 Rennes</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Minasny, Budiman" sort="Minasny, Budiman" uniqKey="Minasny B" first="Budiman" last="Minasny">Budiman Minasny</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Faculty of Agriculture, Food & Natural Resources, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Mcbratney, Alex" sort="Mcbratney, Alex" uniqKey="Mcbratney A" first="Alex" last="Mcbratney">Alex Mcbratney</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Faculty of Agriculture, Food & Natural Resources, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Michot, Didier" sort="Michot, Didier" uniqKey="Michot D" first="Didier" last="Michot">Didier Michot</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>INRA, AGROCAMPUS OUEST, UMR1069, Sol Agro et hydrosystème Spatialisation</s1>
<s2>35000 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
<settlement type="city">Rennes</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Université Européenne de Bretagne</s1>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Université Européenne de Bretagne</wicri:noRegion>
<wicri:noRegion>Université Européenne de Bretagne</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Viaud, Valerie" sort="Viaud, Valerie" uniqKey="Viaud V" first="Valérie" last="Viaud">Valérie Viaud</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRA, AGROCAMPUS OUEST, UMR1069, Sol Agro et hydrosystème Spatialisation</s1>
<s2>35000 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>35000 Rennes</wicri:noRegion>
<wicri:noRegion>Sol Agro et hydrosystème Spatialisation</wicri:noRegion>
<wicri:noRegion>35000 Rennes</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Walter, Christian" sort="Walter, Christian" uniqKey="Walter C" first="Christian" last="Walter">Christian Walter</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRA, AGROCAMPUS OUEST, UMR1069, Sol Agro et hydrosystème Spatialisation</s1>
<s2>35000 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>35000 Rennes</wicri:noRegion>
<wicri:noRegion>Sol Agro et hydrosystème Spatialisation</wicri:noRegion>
<wicri:noRegion>35000 Rennes</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Université Européenne de Bretagne</s1>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Université Européenne de Bretagne</wicri:noRegion>
<wicri:noRegion>Université Européenne de Bretagne</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0046555</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0046555 INIST</idno>
<idno type="RBID">Pascal:14-0046555</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000566</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005891</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000269</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000269</idno>
<idno type="wicri:doubleKey">0016-7061:2014:Lacoste M:high:resolution:d</idno>
<idno type="wicri:Area/Main/Merge">004193</idno>
<idno type="wicri:Area/Main/Curation">004130</idno>
<idno type="wicri:Area/Main/Exploration">004130</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape</title>
<author>
<name sortKey="Lacoste, Marine" sort="Lacoste, Marine" uniqKey="Lacoste M" first="Marine" last="Lacoste">Marine Lacoste</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>INRA, AGROCAMPUS OUEST, UMR1069, Sol Agro et hydrosystème Spatialisation</s1>
<s2>35000 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
<settlement type="city">Rennes</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Minasny, Budiman" sort="Minasny, Budiman" uniqKey="Minasny B" first="Budiman" last="Minasny">Budiman Minasny</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Faculty of Agriculture, Food & Natural Resources, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Mcbratney, Alex" sort="Mcbratney, Alex" uniqKey="Mcbratney A" first="Alex" last="Mcbratney">Alex Mcbratney</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Faculty of Agriculture, Food & Natural Resources, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Michot, Didier" sort="Michot, Didier" uniqKey="Michot D" first="Didier" last="Michot">Didier Michot</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>INRA, AGROCAMPUS OUEST, UMR1069, Sol Agro et hydrosystème Spatialisation</s1>
<s2>35000 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Région Bretagne</region>
<settlement type="city">Rennes</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Université Européenne de Bretagne</s1>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Université Européenne de Bretagne</wicri:noRegion>
<wicri:noRegion>Université Européenne de Bretagne</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Viaud, Valerie" sort="Viaud, Valerie" uniqKey="Viaud V" first="Valérie" last="Viaud">Valérie Viaud</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRA, AGROCAMPUS OUEST, UMR1069, Sol Agro et hydrosystème Spatialisation</s1>
<s2>35000 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>35000 Rennes</wicri:noRegion>
<wicri:noRegion>Sol Agro et hydrosystème Spatialisation</wicri:noRegion>
<wicri:noRegion>35000 Rennes</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Walter, Christian" sort="Walter, Christian" uniqKey="Walter C" first="Christian" last="Walter">Christian Walter</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRA, AGROCAMPUS OUEST, UMR1069, Sol Agro et hydrosystème Spatialisation</s1>
<s2>35000 Rennes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>35000 Rennes</wicri:noRegion>
<wicri:noRegion>Sol Agro et hydrosystème Spatialisation</wicri:noRegion>
<wicri:noRegion>35000 Rennes</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Université Européenne de Bretagne</s1>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>Université Européenne de Bretagne</wicri:noRegion>
<wicri:noRegion>Université Européenne de Bretagne</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Geoderma : (Amsterdam)</title>
<title level="j" type="abbreviated">Geoderma : (Amst.)</title>
<idno type="ISSN">0016-7061</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Geoderma : (Amsterdam)</title>
<title level="j" type="abbreviated">Geoderma : (Amst.)</title>
<idno type="ISSN">0016-7061</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agroecosystem</term>
<term>Anthropogenic factor</term>
<term>Data mining</term>
<term>Ditch</term>
<term>Forecast model</term>
<term>France</term>
<term>Hedge</term>
<term>Predictive value</term>
<term>Rural environment</term>
<term>Spatial scale</term>
<term>Spatial variability</term>
<term>bulk density</term>
<term>cartography</term>
<term>depth</term>
<term>digital elevation models</term>
<term>heterogeneity</term>
<term>high resolution</term>
<term>organic carbon</term>
<term>soils</term>
<term>spatial resolution</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Haute résolution</term>
<term>Cartographie</term>
<term>Carbone organique</term>
<term>Sol</term>
<term>Hétérogénéité</term>
<term>Milieu rural</term>
<term>Agroécosystème</term>
<term>Modèle numérique élévation</term>
<term>Echelle spatiale</term>
<term>Variabilité spatiale</term>
<term>Facteur anthropique</term>
<term>Haie</term>
<term>Fossé tranchée</term>
<term>Profondeur</term>
<term>Résolution spatiale</term>
<term>Fouille donnée</term>
<term>Modèle prévision</term>
<term>Valeur prédictive</term>
<term>Densité apparente</term>
<term>LiDAR</term>
<term>France</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>France</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Cartographie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soil organic carbon (SOC) is a key element of agroecosystems functioning and has a crucial impact on global carbon storage. At the landscape scale, SOC spatial variability is strongly affected by natural and anthropogenic processes and linear anthropogenic elements (such hedges or ditches). This study aims at mapping SOC stocks distribution in the A-horizons for a depth up to 105 cm, at a high spatial resolution, for an area of 10 km
<sup>2</sup>
in a heterogeneous agricultural landscape (North-Western France). We used a data mining tool, Cubist, to build rule-based predictive models and predict SOC content and soil bulk density (BD) from a calibration dataset at 8 standard layers (0 to 7.5 cm, 7.5 to 15 cm, 15 to 30 cm, 30 to 45 cm, 45 to 60 cm, 60 to 75 cm, 75 to 90 cm and 90 to 105 cm). For the models calibration, 70 sampling locations were selected within the whole study area using the conditioned Latin hypercube sampling method. Two independent validation datasets were used to assess the performance of the predictive models: (i) at landscape scale, 49 sampling locations were selected using stratified random sampling based on a 300-m square grid; (ii) at hedge vicinity, 112 sampling locations were selected along transects perpendicular to 14 purposively chosen hedges. Undisturbed samples were collected at fixed depths and analysed for BD and SOC content at each sampling location and continuous soil profiles were reconstructed using equal-area splines. Predictive environmental data consisted in attributes derived from a light detection and ranging digital elevation model (LiDAR DEM), geological variables, land use data and a predictive map of A-horizon thickness. Considering the two validation datasets (at landscape scale and hedge vicinity), root mean square errors (RMSE) of the predictions, computed for all the standard soil layers (up to a depth of 105 cm), were respectively 7.74 and 5.02 g kg
<sup>-1 </sup>
for SOC content, and 0.15 and 0.21 g cm
<sup>-3</sup>
for BD. Best predictions were obtained for layers between 15 and 60 cm of depth. The SOC stocks were calculated over a depth of 105 cm by combining the prediction of SOC content and BD. The final maps show that the carbon stocks in the soil below 30 cm accounted for 33% of the total SOC stocks on average. The whole method produced consistent results between the two predicted soil properties. The final SOC stocks maps provide continuous data along soil profile up to 105 cm, which may be critical information for supporting carbon policy and management decisions.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Nouvelle-Galles du Sud</li>
<li>Région Bretagne</li>
</region>
<settlement>
<li>Rennes</li>
<li>Sydney</li>
</settlement>
<orgName>
<li>Université de Sydney</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Région Bretagne">
<name sortKey="Lacoste, Marine" sort="Lacoste, Marine" uniqKey="Lacoste M" first="Marine" last="Lacoste">Marine Lacoste</name>
</region>
<name sortKey="Michot, Didier" sort="Michot, Didier" uniqKey="Michot D" first="Didier" last="Michot">Didier Michot</name>
<name sortKey="Michot, Didier" sort="Michot, Didier" uniqKey="Michot D" first="Didier" last="Michot">Didier Michot</name>
<name sortKey="Viaud, Valerie" sort="Viaud, Valerie" uniqKey="Viaud V" first="Valérie" last="Viaud">Valérie Viaud</name>
<name sortKey="Walter, Christian" sort="Walter, Christian" uniqKey="Walter C" first="Christian" last="Walter">Christian Walter</name>
<name sortKey="Walter, Christian" sort="Walter, Christian" uniqKey="Walter C" first="Christian" last="Walter">Christian Walter</name>
</country>
<country name="Australie">
<region name="Nouvelle-Galles du Sud">
<name sortKey="Minasny, Budiman" sort="Minasny, Budiman" uniqKey="Minasny B" first="Budiman" last="Minasny">Budiman Minasny</name>
</region>
<name sortKey="Mcbratney, Alex" sort="Mcbratney, Alex" uniqKey="Mcbratney A" first="Alex" last="Mcbratney">Alex Mcbratney</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004130 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004130 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:14-0046555
   |texte=   High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024