Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High di-electric constant nano-structure ceramics synthesis using novel electric discharge assisted mechanical milling and magneto ball milling and its properties

Identifieur interne : 005D34 ( PascalFrancis/Curation ); précédent : 005D33; suivant : 005D35

High di-electric constant nano-structure ceramics synthesis using novel electric discharge assisted mechanical milling and magneto ball milling and its properties

Auteurs : A. A. Chowdhury [Australie] ; A. Calka [Australie] ; D. Wexler [Australie] ; K. Konstantinov [Australie]

Source :

RBID : Pascal:15-0016262

Descripteurs français

English descriptors

Abstract

The conventional method to prepare functional oxides is ceramic-powder-based processing typically via solid-state reaction of microcrystalline starting powders at high temperatures. Disadvantages of this approach include the high temperatures of reaction, limited degree of product chemical homogeneity and difficulties in achieving rapid sintering. Various chemical-based processing routes have been developed to prepare powders of more homogeneous composition, improved reactivity and sintering ability at low temperatures. Regardless of the route chosen to synthesise complex oxides, almost all of them require lengthy heat treatment schedules that usually exceed 10 h, as well as multi-stage processing steps. We describe two approaches to address these problems, applied to successful synthesis of both MgAl2O4 and CaCu3Ti4O12 (CCT) oxides exhibiting excellent di-electric properties. One approach employed the novel direct synthesis technique of electric discharge assisted mechanical milling (EDAMM) and the second used the more conventional method of controlled ball milling using the magneto-mechanical method followed by heat treatment of nano-structural products. By using EDAMM, nano-crystalline precursors for transformation into high di-electric constant ceramics could be formed in as little as 0.1% of the processing time required for conventional solid-state techniques while ball milling using the magneto method also resulted in nano-structural precursors powders suitable for reaction by heat treatment to form oxide supercapacitor. Sample characterisation was carried out using XRD, TEM and SEM. Di-electric property measurements were performed using AC-LCR and by DC meters.
pA  
A01 01  1    @0 1475-7435
A03   1    @0 Int. j. nanotechnol.
A05       @2 11
A06       @2 9-11
A08 01  1  ENG  @1 High di-electric constant nano-structure ceramics synthesis using novel electric discharge assisted mechanical milling and magneto ball milling and its properties
A09 01  1  ENG  @1 Symposium 'Nanomaterials for Energy Conversion and Storage'
A11 01  1    @1 CHOWDHURY (A. A.)
A11 02  1    @1 CALKA (A.)
A11 03  1    @1 WEXLER (D.)
A11 04  1    @1 KONSTANTINOV (K.)
A12 01  1    @1 CABOT (Andreu) @9 ed.
A12 02  1    @1 LIU (Hong) @9 ed.
A12 03  1    @1 ROBINSON (Richard D.) @9 ed.
A14 01      @1 School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong @2 NSW 2522 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A15 01      @1 Catalonia Institute for Energy Research - IREC, Sant Adrià del Besos @2 08930 Barcelona @3 ESP @Z 1 aut.
A15 02      @1 Institució Catalana de Recerca i Estudis Avançats - ICREA @2 Barcelona 08010 @3 ESP @Z 1 aut.
A15 03      @1 State Key Laboratory of Crystal Materials, Center of Bio & Micro/nano Functional Materials, Shandong University, 27 Shandanan Road @2 Jinan 250100 @3 CHN @Z 2 aut.
A15 04      @1 Department of Materials Science and Engineering, Cornell University @2 Ithaca, New York 14853 @3 USA @Z 3 aut.
A18 01  1    @1 European Materials Research Society (E-MRS) @2 Strasbourg @3 FRA @9 org-cong.
A20       @1 728-736
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 27530 @5 354000502541020010
A44       @0 0000 @1 © 2015 INIST-CNRS. All rights reserved.
A45       @0 19 ref.
A47 01  1    @0 15-0016262
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 International journal of nanotechnology
A66 01      @0 CHE
C01 01    ENG  @0 The conventional method to prepare functional oxides is ceramic-powder-based processing typically via solid-state reaction of microcrystalline starting powders at high temperatures. Disadvantages of this approach include the high temperatures of reaction, limited degree of product chemical homogeneity and difficulties in achieving rapid sintering. Various chemical-based processing routes have been developed to prepare powders of more homogeneous composition, improved reactivity and sintering ability at low temperatures. Regardless of the route chosen to synthesise complex oxides, almost all of them require lengthy heat treatment schedules that usually exceed 10 h, as well as multi-stage processing steps. We describe two approaches to address these problems, applied to successful synthesis of both MgAl2O4 and CaCu3Ti4O12 (CCT) oxides exhibiting excellent di-electric properties. One approach employed the novel direct synthesis technique of electric discharge assisted mechanical milling (EDAMM) and the second used the more conventional method of controlled ball milling using the magneto-mechanical method followed by heat treatment of nano-structural products. By using EDAMM, nano-crystalline precursors for transformation into high di-electric constant ceramics could be formed in as little as 0.1% of the processing time required for conventional solid-state techniques while ball milling using the magneto method also resulted in nano-structural precursors powders suitable for reaction by heat treatment to form oxide supercapacitor. Sample characterisation was carried out using XRD, TEM and SEM. Di-electric property measurements were performed using AC-LCR and by DC meters.
C02 01  3    @0 001B80A07W
C03 01  3  FRE  @0 Décharge électrique @5 01
C03 01  3  ENG  @0 Electric discharges @5 01
C03 02  3  FRE  @0 Alliage mécanique @5 02
C03 02  3  ENG  @0 Mechanical alloying @5 02
C03 03  X  FRE  @0 Céramique oxyde @5 03
C03 03  X  ENG  @0 Oxide ceramics @5 03
C03 03  X  SPA  @0 Cerámica óxido @5 03
C03 04  X  FRE  @0 Réaction état solide @5 04
C03 04  X  ENG  @0 Solid state reaction @5 04
C03 04  X  SPA  @0 Reacción estado sólido @5 04
C03 05  3  FRE  @0 Frittage @5 05
C03 05  3  ENG  @0 Sintering @5 05
C03 06  3  FRE  @0 Traitement thermique @5 06
C03 06  3  ENG  @0 Heat treatments @5 06
C03 07  3  FRE  @0 Précurseur @5 07
C03 07  3  ENG  @0 Precursor @5 07
C03 08  X  FRE  @0 Nanopoudre @5 08
C03 08  X  ENG  @0 Nanopowder @5 08
C03 08  X  SPA  @0 Nanopolvo @5 08
C03 09  3  FRE  @0 Diffraction RX @5 09
C03 09  3  ENG  @0 XRD @5 09
C03 10  3  FRE  @0 Microscopie électronique transmission @5 10
C03 10  3  ENG  @0 Transmission electron microscopy @5 10
C03 11  3  FRE  @0 Microscopie électronique balayage @5 11
C03 11  3  ENG  @0 Scanning electron microscopy @5 11
C03 12  3  FRE  @0 CaCu3Ti4O12 @4 INC @5 46
C03 13  3  FRE  @0 8107W @4 INC @5 71
N21       @1 019
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 European Materials Research Society Spring Meeting. Symposium 'Nanomaterials for Energy Conversion and Storage' @3 Strasbourg FRA @4 2013-05-27

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:15-0016262

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High di-electric constant nano-structure ceramics synthesis using novel electric discharge assisted mechanical milling and magneto ball milling and its properties</title>
<author>
<name sortKey="Chowdhury, A A" sort="Chowdhury, A A" uniqKey="Chowdhury A" first="A. A." last="Chowdhury">A. A. Chowdhury</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Calka, A" sort="Calka, A" uniqKey="Calka A" first="A." last="Calka">A. Calka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Wexler, D" sort="Wexler, D" uniqKey="Wexler D" first="D." last="Wexler">D. Wexler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Konstantinov, K" sort="Konstantinov, K" uniqKey="Konstantinov K" first="K." last="Konstantinov">K. Konstantinov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">15-0016262</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 15-0016262 INIST</idno>
<idno type="RBID">Pascal:15-0016262</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000119</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005D34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">High di-electric constant nano-structure ceramics synthesis using novel electric discharge assisted mechanical milling and magneto ball milling and its properties</title>
<author>
<name sortKey="Chowdhury, A A" sort="Chowdhury, A A" uniqKey="Chowdhury A" first="A. A." last="Chowdhury">A. A. Chowdhury</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Calka, A" sort="Calka, A" uniqKey="Calka A" first="A." last="Calka">A. Calka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Wexler, D" sort="Wexler, D" uniqKey="Wexler D" first="D." last="Wexler">D. Wexler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Konstantinov, K" sort="Konstantinov, K" uniqKey="Konstantinov K" first="K." last="Konstantinov">K. Konstantinov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">International journal of nanotechnology</title>
<title level="j" type="abbreviated">Int. j. nanotechnol.</title>
<idno type="ISSN">1475-7435</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">International journal of nanotechnology</title>
<title level="j" type="abbreviated">Int. j. nanotechnol.</title>
<idno type="ISSN">1475-7435</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electric discharges</term>
<term>Heat treatments</term>
<term>Mechanical alloying</term>
<term>Nanopowder</term>
<term>Oxide ceramics</term>
<term>Precursor</term>
<term>Scanning electron microscopy</term>
<term>Sintering</term>
<term>Solid state reaction</term>
<term>Transmission electron microscopy</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Décharge électrique</term>
<term>Alliage mécanique</term>
<term>Céramique oxyde</term>
<term>Réaction état solide</term>
<term>Frittage</term>
<term>Traitement thermique</term>
<term>Précurseur</term>
<term>Nanopoudre</term>
<term>Diffraction RX</term>
<term>Microscopie électronique transmission</term>
<term>Microscopie électronique balayage</term>
<term>CaCu3Ti4O12</term>
<term>8107W</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The conventional method to prepare functional oxides is ceramic-powder-based processing typically via solid-state reaction of microcrystalline starting powders at high temperatures. Disadvantages of this approach include the high temperatures of reaction, limited degree of product chemical homogeneity and difficulties in achieving rapid sintering. Various chemical-based processing routes have been developed to prepare powders of more homogeneous composition, improved reactivity and sintering ability at low temperatures. Regardless of the route chosen to synthesise complex oxides, almost all of them require lengthy heat treatment schedules that usually exceed 10 h, as well as multi-stage processing steps. We describe two approaches to address these problems, applied to successful synthesis of both MgAl
<sub>2</sub>
O
<sub>4</sub>
and CaCu
<sub>3</sub>
Ti
<sub>4</sub>
O
<sub>12</sub>
(CCT) oxides exhibiting excellent di-electric properties. One approach employed the novel direct synthesis technique of electric discharge assisted mechanical milling (EDAMM) and the second used the more conventional method of controlled ball milling using the magneto-mechanical method followed by heat treatment of nano-structural products. By using EDAMM, nano-crystalline precursors for transformation into high di-electric constant ceramics could be formed in as little as 0.1% of the processing time required for conventional solid-state techniques while ball milling using the magneto method also resulted in nano-structural precursors powders suitable for reaction by heat treatment to form oxide supercapacitor. Sample characterisation was carried out using XRD, TEM and SEM. Di-electric property measurements were performed using AC-LCR and by DC meters.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1475-7435</s0>
</fA01>
<fA03 i2="1">
<s0>Int. j. nanotechnol.</s0>
</fA03>
<fA05>
<s2>11</s2>
</fA05>
<fA06>
<s2>9-11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>High di-electric constant nano-structure ceramics synthesis using novel electric discharge assisted mechanical milling and magneto ball milling and its properties</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Symposium 'Nanomaterials for Energy Conversion and Storage'</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>CHOWDHURY (A. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CALKA (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WEXLER (D.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KONSTANTINOV (K.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CABOT (Andreu)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>LIU (Hong)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>ROBINSON (Richard D.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong</s1>
<s2>NSW 2522</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Catalonia Institute for Energy Research - IREC, Sant Adrià del Besos</s1>
<s2>08930 Barcelona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Institució Catalana de Recerca i Estudis Avançats - ICREA</s1>
<s2>Barcelona 08010</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>State Key Laboratory of Crystal Materials, Center of Bio & Micro/nano Functional Materials, Shandong University, 27 Shandanan Road</s1>
<s2>Jinan 250100</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Department of Materials Science and Engineering, Cornell University</s1>
<s2>Ithaca, New York 14853</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>European Materials Research Society (E-MRS)</s1>
<s2>Strasbourg</s2>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>728-736</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27530</s2>
<s5>354000502541020010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2015 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>15-0016262</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of nanotechnology</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The conventional method to prepare functional oxides is ceramic-powder-based processing typically via solid-state reaction of microcrystalline starting powders at high temperatures. Disadvantages of this approach include the high temperatures of reaction, limited degree of product chemical homogeneity and difficulties in achieving rapid sintering. Various chemical-based processing routes have been developed to prepare powders of more homogeneous composition, improved reactivity and sintering ability at low temperatures. Regardless of the route chosen to synthesise complex oxides, almost all of them require lengthy heat treatment schedules that usually exceed 10 h, as well as multi-stage processing steps. We describe two approaches to address these problems, applied to successful synthesis of both MgAl
<sub>2</sub>
O
<sub>4</sub>
and CaCu
<sub>3</sub>
Ti
<sub>4</sub>
O
<sub>12</sub>
(CCT) oxides exhibiting excellent di-electric properties. One approach employed the novel direct synthesis technique of electric discharge assisted mechanical milling (EDAMM) and the second used the more conventional method of controlled ball milling using the magneto-mechanical method followed by heat treatment of nano-structural products. By using EDAMM, nano-crystalline precursors for transformation into high di-electric constant ceramics could be formed in as little as 0.1% of the processing time required for conventional solid-state techniques while ball milling using the magneto method also resulted in nano-structural precursors powders suitable for reaction by heat treatment to form oxide supercapacitor. Sample characterisation was carried out using XRD, TEM and SEM. Di-electric property measurements were performed using AC-LCR and by DC meters.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07W</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Décharge électrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electric discharges</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Alliage mécanique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Mechanical alloying</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Céramique oxyde</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Oxide ceramics</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Cerámica óxido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Réaction état solide</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solid state reaction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Reacción estado sólido</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Frittage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Sintering</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Précurseur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Precursor</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Nanopoudre</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Nanopowder</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Nanopolvo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>XRD</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>CaCu3Ti4O12</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>8107W</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fN21>
<s1>019</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>European Materials Research Society Spring Meeting. Symposium 'Nanomaterials for Energy Conversion and Storage'</s1>
<s3>Strasbourg FRA</s3>
<s4>2013-05-27</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005D34 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 005D34 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:15-0016262
   |texte=   High di-electric constant nano-structure ceramics synthesis using novel electric discharge assisted mechanical milling and magneto ball milling and its properties
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024