Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite

Identifieur interne : 000926 ( Istex/Curation ); précédent : 000925; suivant : 000927

Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite

Auteurs : Carlos J. Garrido [France] ; Jean-Louis Bodinier [France] ; Olivier Alard [Australie]

Source :

RBID : ISTEX:30644AABD11195CC65E058722BA50A60DBA857B9

Descripteurs français

English descriptors

Abstract

Abstract: We report solution-ICPMS analyses of Rb, Ba, Th, U, Nb, Ta, REE, Sr, Zr and Hf for acid-leached minerals of anhydrous spinel peridotites and websterites from the Ronda peridotite (S. Spain). The same elements were also analyzed by LA-ICPMS in the silicates of three peridotites. The results obtained by solution-ICPMS and LA-ICPMS are similar for the less (HREE) and the most incompatible (Rb–Ba) elements, and provide comparable inter-element distribution coefficients (Dxt/cpx) for these elements. However, moderately incompatible elements (typically LREE) show significant discrepancies between solution and in situ analyses. Dopx/cpx and Dol/cpx for these elements are generally lower for solution than for in situ analyses. Dxt/cpx for MREE, HREE, Zr and Hf are consistent with experimental values. In contrast, Dxt/cpx for highly incompatible elements and LREE are higher than expected from available experimental data and/or crystal-chemical considerations. The observed Dxt/cpx for the most incompatible trace elements may be explained by very small amounts of melt/fluid, or solid, inclusions trapped in these minerals. Inclusions would affect both solution- and LA-ICPMS data, but their proportion would be less important for LA-ICPMS analyses. We show with a mixing model that an extremely small amount of equilibrium partial melt (typically 0.01–0.1%) trapped in minerals is sufficient to increase the Dopx/cpx for HIE and LREE by a factor of 5–20 and the Dol/cpx by two or three orders of magnitude. Similar effects may be produced by sub-percent amounts of HIE-rich fluids of solid microphases. Such very small volumes of inclusions may pass unnoticed during mineral handpicking and LA-ICPMS analysis. Hence, Dxt/cpx for HIE and LREE should be considered cautiously when mineral analyses are used to constrain melt processes and mantle composition. Mass balance calculations were performed for a nominally anhydrous spinel harzburgite sample. Similar to previous studies, the mass balance indicates important discrepancies for HIE between peridotite composition reconstructed from mineral analyses (bulk and in situ) and whole rock composition. The major silicate minerals are the main repositories for REE, Zr and Hf (>75% of the whole rock budget), and also host ≥65% of Th and U. In contrast, more than 80% of the budget of Rb, Ba and Nb, and about 60% of Ta and Sr, is hosted by micro-components in grain boundaries (GBC) or trapped in minerals (inclusions). Alone, the GBC accounts for 50% of the budget of Nb and Ta. The inclusions are an important repository for Rb (39%), Nb (40%) and Sr (49%). The GBC and inclusion repositories display very similar trace element signatures, suggesting that they were once a single repository (<1 wt%) now re-distributed in different textural components. This repository could be a combination of hydrous phases and/or Ti oxides, and/or melt/fluid inclusions of mantle origin.

Url:
DOI: 10.1016/S0012-821X(00)00201-6

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:30644AABD11195CC65E058722BA50A60DBA857B9

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite</title>
<author>
<name sortKey="Garrido, Carlos J" sort="Garrido, Carlos J" uniqKey="Garrido C" first="Carlos J." last="Garrido">Carlos J. Garrido</name>
<affiliation wicri:level="1">
<mods:affiliation>E-mail: garrido@babouin.dstu.univ-montp2.fr</mods:affiliation>
<country wicri:rule="url">France</country>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</mods:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bodinier, Jean Louis" sort="Bodinier, Jean Louis" uniqKey="Bodinier J" first="Jean-Louis" last="Bodinier">Jean-Louis Bodinier</name>
<affiliation wicri:level="1">
<mods:affiliation>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</mods:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Alard, Olivier" sort="Alard, Olivier" uniqKey="Alard O" first="Olivier" last="Alard">Olivier Alard</name>
<affiliation wicri:level="1">
<mods:affiliation>GEMOC, School of Earth and Planetary Sciences, Macquarie University, Sydney, N.S.W. 2109, Australia</mods:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>GEMOC, School of Earth and Planetary Sciences, Macquarie University, Sydney, N.S.W. 2109</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:30644AABD11195CC65E058722BA50A60DBA857B9</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S0012-821X(00)00201-6</idno>
<idno type="url">https://api.istex.fr/document/30644AABD11195CC65E058722BA50A60DBA857B9/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000926</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000926</idno>
<idno type="wicri:Area/Istex/Curation">000926</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite</title>
<author>
<name sortKey="Garrido, Carlos J" sort="Garrido, Carlos J" uniqKey="Garrido C" first="Carlos J." last="Garrido">Carlos J. Garrido</name>
<affiliation wicri:level="1">
<mods:affiliation>E-mail: garrido@babouin.dstu.univ-montp2.fr</mods:affiliation>
<country wicri:rule="url">France</country>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</mods:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bodinier, Jean Louis" sort="Bodinier, Jean Louis" uniqKey="Bodinier J" first="Jean-Louis" last="Bodinier">Jean-Louis Bodinier</name>
<affiliation wicri:level="1">
<mods:affiliation>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</mods:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Alard, Olivier" sort="Alard, Olivier" uniqKey="Alard O" first="Olivier" last="Alard">Olivier Alard</name>
<affiliation wicri:level="1">
<mods:affiliation>GEMOC, School of Earth and Planetary Sciences, Macquarie University, Sydney, N.S.W. 2109, Australia</mods:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>GEMOC, School of Earth and Planetary Sciences, Macquarie University, Sydney, N.S.W. 2109</wicri:regionArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Earth and Planetary Science Letters</title>
<title level="j" type="abbrev">EPSL</title>
<idno type="ISSN">0012-821X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">181</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="341">341</biblScope>
<biblScope unit="page" to="358">358</biblScope>
</imprint>
<idno type="ISSN">0012-821X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0012-821X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ablation</term>
<term>Acta</term>
<term>Amphibole</term>
<term>Anhydrous</term>
<term>Anhydrous spinel peridotites</term>
<term>Anomaly</term>
<term>Background dataset1</term>
<term>Basaltic systems</term>
<term>Bodinier</term>
<term>Bulk analyses</term>
<term>Bulk dolacpx</term>
<term>Bulk dopxacpx</term>
<term>Bulk dxtacpx</term>
<term>Bulk spinel</term>
<term>Bulk values</term>
<term>Clinopyroxene</term>
<term>Cosmochim</term>
<term>Detection limits</term>
<term>Dolacpx</term>
<term>Dopxacpx</term>
<term>Dxtacpx</term>
<term>Dxtacpx values</term>
<term>Earth planet</term>
<term>Epsl</term>
<term>Error bars</term>
<term>Experimental values</term>
<term>Garrido</term>
<term>Geochim</term>
<term>Good correspondence</term>
<term>Harzburgite</term>
<term>High values</term>
<term>Higher proportions</term>
<term>Hree</term>
<term>Icpms</term>
<term>Inclusion</term>
<term>Incompatible</term>
<term>Incompatible elements</term>
<term>Incompatible trace elements</term>
<term>Laser</term>
<term>Lett</term>
<term>Lherzolites</term>
<term>Lree</term>
<term>Main repositories</term>
<term>Major silicates</term>
<term>Mantle origin</term>
<term>Mantle processes</term>
<term>Mantle xenoliths</term>
<term>Massif</term>
<term>Microphases</term>
<term>Mineral</term>
<term>Mineral modes</term>
<term>More details</term>
<term>Mree</term>
<term>Olivine</term>
<term>Other hand</term>
<term>Partitioning</term>
<term>Peridotite</term>
<term>Peridotite massifs</term>
<term>Peridotite samples</term>
<term>Petrol</term>
<term>Phlogopite</term>
<term>Planetary science letters</term>
<term>Procedural blanks</term>
<term>Rare earth elements</term>
<term>Right panel</term>
<term>Ronda</term>
<term>Ronda peridotite</term>
<term>Ronda peridotites</term>
<term>Same sample</term>
<term>Silicate</term>
<term>Silicate minerals</term>
<term>Spinel</term>
<term>Spinel harzburgite</term>
<term>Spinel peridotites</term>
<term>Trace element patterns</term>
<term>Trace elements</term>
<term>Upper bounds</term>
<term>Upper mantle</term>
<term>Websterites</term>
<term>Whole rock</term>
<term>Whole rock analyses</term>
<term>Whole rock budget</term>
<term>Xenolith</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Ablation</term>
<term>Acta</term>
<term>Amphibole</term>
<term>Anhydrous</term>
<term>Anhydrous spinel peridotites</term>
<term>Anomaly</term>
<term>Background dataset1</term>
<term>Basaltic systems</term>
<term>Bodinier</term>
<term>Bulk analyses</term>
<term>Bulk dolacpx</term>
<term>Bulk dopxacpx</term>
<term>Bulk dxtacpx</term>
<term>Bulk spinel</term>
<term>Bulk values</term>
<term>Clinopyroxene</term>
<term>Cosmochim</term>
<term>Detection limits</term>
<term>Dolacpx</term>
<term>Dopxacpx</term>
<term>Dxtacpx</term>
<term>Dxtacpx values</term>
<term>Earth planet</term>
<term>Epsl</term>
<term>Error bars</term>
<term>Experimental values</term>
<term>Garrido</term>
<term>Geochim</term>
<term>Good correspondence</term>
<term>Harzburgite</term>
<term>High values</term>
<term>Higher proportions</term>
<term>Hree</term>
<term>Icpms</term>
<term>Inclusion</term>
<term>Incompatible</term>
<term>Incompatible elements</term>
<term>Incompatible trace elements</term>
<term>Laser</term>
<term>Lett</term>
<term>Lherzolites</term>
<term>Lree</term>
<term>Main repositories</term>
<term>Major silicates</term>
<term>Mantle origin</term>
<term>Mantle processes</term>
<term>Mantle xenoliths</term>
<term>Massif</term>
<term>Microphases</term>
<term>Mineral</term>
<term>Mineral modes</term>
<term>More details</term>
<term>Mree</term>
<term>Olivine</term>
<term>Other hand</term>
<term>Partitioning</term>
<term>Peridotite</term>
<term>Peridotite massifs</term>
<term>Peridotite samples</term>
<term>Petrol</term>
<term>Phlogopite</term>
<term>Planetary science letters</term>
<term>Procedural blanks</term>
<term>Rare earth elements</term>
<term>Right panel</term>
<term>Ronda</term>
<term>Ronda peridotite</term>
<term>Ronda peridotites</term>
<term>Same sample</term>
<term>Silicate</term>
<term>Silicate minerals</term>
<term>Spinel</term>
<term>Spinel harzburgite</term>
<term>Spinel peridotites</term>
<term>Trace element patterns</term>
<term>Trace elements</term>
<term>Upper bounds</term>
<term>Upper mantle</term>
<term>Websterites</term>
<term>Whole rock</term>
<term>Whole rock analyses</term>
<term>Whole rock budget</term>
<term>Xenolith</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Essence</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: We report solution-ICPMS analyses of Rb, Ba, Th, U, Nb, Ta, REE, Sr, Zr and Hf for acid-leached minerals of anhydrous spinel peridotites and websterites from the Ronda peridotite (S. Spain). The same elements were also analyzed by LA-ICPMS in the silicates of three peridotites. The results obtained by solution-ICPMS and LA-ICPMS are similar for the less (HREE) and the most incompatible (Rb–Ba) elements, and provide comparable inter-element distribution coefficients (Dxt/cpx) for these elements. However, moderately incompatible elements (typically LREE) show significant discrepancies between solution and in situ analyses. Dopx/cpx and Dol/cpx for these elements are generally lower for solution than for in situ analyses. Dxt/cpx for MREE, HREE, Zr and Hf are consistent with experimental values. In contrast, Dxt/cpx for highly incompatible elements and LREE are higher than expected from available experimental data and/or crystal-chemical considerations. The observed Dxt/cpx for the most incompatible trace elements may be explained by very small amounts of melt/fluid, or solid, inclusions trapped in these minerals. Inclusions would affect both solution- and LA-ICPMS data, but their proportion would be less important for LA-ICPMS analyses. We show with a mixing model that an extremely small amount of equilibrium partial melt (typically 0.01–0.1%) trapped in minerals is sufficient to increase the Dopx/cpx for HIE and LREE by a factor of 5–20 and the Dol/cpx by two or three orders of magnitude. Similar effects may be produced by sub-percent amounts of HIE-rich fluids of solid microphases. Such very small volumes of inclusions may pass unnoticed during mineral handpicking and LA-ICPMS analysis. Hence, Dxt/cpx for HIE and LREE should be considered cautiously when mineral analyses are used to constrain melt processes and mantle composition. Mass balance calculations were performed for a nominally anhydrous spinel harzburgite sample. Similar to previous studies, the mass balance indicates important discrepancies for HIE between peridotite composition reconstructed from mineral analyses (bulk and in situ) and whole rock composition. The major silicate minerals are the main repositories for REE, Zr and Hf (>75% of the whole rock budget), and also host ≥65% of Th and U. In contrast, more than 80% of the budget of Rb, Ba and Nb, and about 60% of Ta and Sr, is hosted by micro-components in grain boundaries (GBC) or trapped in minerals (inclusions). Alone, the GBC accounts for 50% of the budget of Nb and Ta. The inclusions are an important repository for Rb (39%), Nb (40%) and Sr (49%). The GBC and inclusion repositories display very similar trace element signatures, suggesting that they were once a single repository (<1 wt%) now re-distributed in different textural components. This repository could be a combination of hydrous phases and/or Ti oxides, and/or melt/fluid inclusions of mantle origin.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000926 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Curation/biblio.hfd -nk 000926 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:30644AABD11195CC65E058722BA50A60DBA857B9
   |texte=   Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024