Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite

Identifieur interne : 000926 ( Istex/Corpus ); précédent : 000925; suivant : 000927

Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite

Auteurs : Carlos J. Garrido ; Jean-Louis Bodinier ; Olivier Alard

Source :

RBID : ISTEX:30644AABD11195CC65E058722BA50A60DBA857B9

English descriptors

Abstract

Abstract: We report solution-ICPMS analyses of Rb, Ba, Th, U, Nb, Ta, REE, Sr, Zr and Hf for acid-leached minerals of anhydrous spinel peridotites and websterites from the Ronda peridotite (S. Spain). The same elements were also analyzed by LA-ICPMS in the silicates of three peridotites. The results obtained by solution-ICPMS and LA-ICPMS are similar for the less (HREE) and the most incompatible (Rb–Ba) elements, and provide comparable inter-element distribution coefficients (Dxt/cpx) for these elements. However, moderately incompatible elements (typically LREE) show significant discrepancies between solution and in situ analyses. Dopx/cpx and Dol/cpx for these elements are generally lower for solution than for in situ analyses. Dxt/cpx for MREE, HREE, Zr and Hf are consistent with experimental values. In contrast, Dxt/cpx for highly incompatible elements and LREE are higher than expected from available experimental data and/or crystal-chemical considerations. The observed Dxt/cpx for the most incompatible trace elements may be explained by very small amounts of melt/fluid, or solid, inclusions trapped in these minerals. Inclusions would affect both solution- and LA-ICPMS data, but their proportion would be less important for LA-ICPMS analyses. We show with a mixing model that an extremely small amount of equilibrium partial melt (typically 0.01–0.1%) trapped in minerals is sufficient to increase the Dopx/cpx for HIE and LREE by a factor of 5–20 and the Dol/cpx by two or three orders of magnitude. Similar effects may be produced by sub-percent amounts of HIE-rich fluids of solid microphases. Such very small volumes of inclusions may pass unnoticed during mineral handpicking and LA-ICPMS analysis. Hence, Dxt/cpx for HIE and LREE should be considered cautiously when mineral analyses are used to constrain melt processes and mantle composition. Mass balance calculations were performed for a nominally anhydrous spinel harzburgite sample. Similar to previous studies, the mass balance indicates important discrepancies for HIE between peridotite composition reconstructed from mineral analyses (bulk and in situ) and whole rock composition. The major silicate minerals are the main repositories for REE, Zr and Hf (>75% of the whole rock budget), and also host ≥65% of Th and U. In contrast, more than 80% of the budget of Rb, Ba and Nb, and about 60% of Ta and Sr, is hosted by micro-components in grain boundaries (GBC) or trapped in minerals (inclusions). Alone, the GBC accounts for 50% of the budget of Nb and Ta. The inclusions are an important repository for Rb (39%), Nb (40%) and Sr (49%). The GBC and inclusion repositories display very similar trace element signatures, suggesting that they were once a single repository (<1 wt%) now re-distributed in different textural components. This repository could be a combination of hydrous phases and/or Ti oxides, and/or melt/fluid inclusions of mantle origin.

Url:
DOI: 10.1016/S0012-821X(00)00201-6

Links to Exploration step

ISTEX:30644AABD11195CC65E058722BA50A60DBA857B9

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite</title>
<author>
<name sortKey="Garrido, Carlos J" sort="Garrido, Carlos J" uniqKey="Garrido C" first="Carlos J." last="Garrido">Carlos J. Garrido</name>
<affiliation>
<mods:affiliation>E-mail: garrido@babouin.dstu.univ-montp2.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bodinier, Jean Louis" sort="Bodinier, Jean Louis" uniqKey="Bodinier J" first="Jean-Louis" last="Bodinier">Jean-Louis Bodinier</name>
<affiliation>
<mods:affiliation>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alard, Olivier" sort="Alard, Olivier" uniqKey="Alard O" first="Olivier" last="Alard">Olivier Alard</name>
<affiliation>
<mods:affiliation>GEMOC, School of Earth and Planetary Sciences, Macquarie University, Sydney, N.S.W. 2109, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:30644AABD11195CC65E058722BA50A60DBA857B9</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S0012-821X(00)00201-6</idno>
<idno type="url">https://api.istex.fr/document/30644AABD11195CC65E058722BA50A60DBA857B9/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000926</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000926</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite</title>
<author>
<name sortKey="Garrido, Carlos J" sort="Garrido, Carlos J" uniqKey="Garrido C" first="Carlos J." last="Garrido">Carlos J. Garrido</name>
<affiliation>
<mods:affiliation>E-mail: garrido@babouin.dstu.univ-montp2.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bodinier, Jean Louis" sort="Bodinier, Jean Louis" uniqKey="Bodinier J" first="Jean-Louis" last="Bodinier">Jean-Louis Bodinier</name>
<affiliation>
<mods:affiliation>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alard, Olivier" sort="Alard, Olivier" uniqKey="Alard O" first="Olivier" last="Alard">Olivier Alard</name>
<affiliation>
<mods:affiliation>GEMOC, School of Earth and Planetary Sciences, Macquarie University, Sydney, N.S.W. 2109, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Earth and Planetary Science Letters</title>
<title level="j" type="abbrev">EPSL</title>
<idno type="ISSN">0012-821X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">181</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="341">341</biblScope>
<biblScope unit="page" to="358">358</biblScope>
</imprint>
<idno type="ISSN">0012-821X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0012-821X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ablation</term>
<term>Acta</term>
<term>Amphibole</term>
<term>Anhydrous</term>
<term>Anhydrous spinel peridotites</term>
<term>Anomaly</term>
<term>Background dataset1</term>
<term>Basaltic systems</term>
<term>Bodinier</term>
<term>Bulk analyses</term>
<term>Bulk dolacpx</term>
<term>Bulk dopxacpx</term>
<term>Bulk dxtacpx</term>
<term>Bulk spinel</term>
<term>Bulk values</term>
<term>Clinopyroxene</term>
<term>Cosmochim</term>
<term>Detection limits</term>
<term>Dolacpx</term>
<term>Dopxacpx</term>
<term>Dxtacpx</term>
<term>Dxtacpx values</term>
<term>Earth planet</term>
<term>Epsl</term>
<term>Error bars</term>
<term>Experimental values</term>
<term>Garrido</term>
<term>Geochim</term>
<term>Good correspondence</term>
<term>Harzburgite</term>
<term>High values</term>
<term>Higher proportions</term>
<term>Hree</term>
<term>Icpms</term>
<term>Inclusion</term>
<term>Incompatible</term>
<term>Incompatible elements</term>
<term>Incompatible trace elements</term>
<term>Laser</term>
<term>Lett</term>
<term>Lherzolites</term>
<term>Lree</term>
<term>Main repositories</term>
<term>Major silicates</term>
<term>Mantle origin</term>
<term>Mantle processes</term>
<term>Mantle xenoliths</term>
<term>Massif</term>
<term>Microphases</term>
<term>Mineral</term>
<term>Mineral modes</term>
<term>More details</term>
<term>Mree</term>
<term>Olivine</term>
<term>Other hand</term>
<term>Partitioning</term>
<term>Peridotite</term>
<term>Peridotite massifs</term>
<term>Peridotite samples</term>
<term>Petrol</term>
<term>Phlogopite</term>
<term>Planetary science letters</term>
<term>Procedural blanks</term>
<term>Rare earth elements</term>
<term>Right panel</term>
<term>Ronda</term>
<term>Ronda peridotite</term>
<term>Ronda peridotites</term>
<term>Same sample</term>
<term>Silicate</term>
<term>Silicate minerals</term>
<term>Spinel</term>
<term>Spinel harzburgite</term>
<term>Spinel peridotites</term>
<term>Trace element patterns</term>
<term>Trace elements</term>
<term>Upper bounds</term>
<term>Upper mantle</term>
<term>Websterites</term>
<term>Whole rock</term>
<term>Whole rock analyses</term>
<term>Whole rock budget</term>
<term>Xenolith</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Ablation</term>
<term>Acta</term>
<term>Amphibole</term>
<term>Anhydrous</term>
<term>Anhydrous spinel peridotites</term>
<term>Anomaly</term>
<term>Background dataset1</term>
<term>Basaltic systems</term>
<term>Bodinier</term>
<term>Bulk analyses</term>
<term>Bulk dolacpx</term>
<term>Bulk dopxacpx</term>
<term>Bulk dxtacpx</term>
<term>Bulk spinel</term>
<term>Bulk values</term>
<term>Clinopyroxene</term>
<term>Cosmochim</term>
<term>Detection limits</term>
<term>Dolacpx</term>
<term>Dopxacpx</term>
<term>Dxtacpx</term>
<term>Dxtacpx values</term>
<term>Earth planet</term>
<term>Epsl</term>
<term>Error bars</term>
<term>Experimental values</term>
<term>Garrido</term>
<term>Geochim</term>
<term>Good correspondence</term>
<term>Harzburgite</term>
<term>High values</term>
<term>Higher proportions</term>
<term>Hree</term>
<term>Icpms</term>
<term>Inclusion</term>
<term>Incompatible</term>
<term>Incompatible elements</term>
<term>Incompatible trace elements</term>
<term>Laser</term>
<term>Lett</term>
<term>Lherzolites</term>
<term>Lree</term>
<term>Main repositories</term>
<term>Major silicates</term>
<term>Mantle origin</term>
<term>Mantle processes</term>
<term>Mantle xenoliths</term>
<term>Massif</term>
<term>Microphases</term>
<term>Mineral</term>
<term>Mineral modes</term>
<term>More details</term>
<term>Mree</term>
<term>Olivine</term>
<term>Other hand</term>
<term>Partitioning</term>
<term>Peridotite</term>
<term>Peridotite massifs</term>
<term>Peridotite samples</term>
<term>Petrol</term>
<term>Phlogopite</term>
<term>Planetary science letters</term>
<term>Procedural blanks</term>
<term>Rare earth elements</term>
<term>Right panel</term>
<term>Ronda</term>
<term>Ronda peridotite</term>
<term>Ronda peridotites</term>
<term>Same sample</term>
<term>Silicate</term>
<term>Silicate minerals</term>
<term>Spinel</term>
<term>Spinel harzburgite</term>
<term>Spinel peridotites</term>
<term>Trace element patterns</term>
<term>Trace elements</term>
<term>Upper bounds</term>
<term>Upper mantle</term>
<term>Websterites</term>
<term>Whole rock</term>
<term>Whole rock analyses</term>
<term>Whole rock budget</term>
<term>Xenolith</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: We report solution-ICPMS analyses of Rb, Ba, Th, U, Nb, Ta, REE, Sr, Zr and Hf for acid-leached minerals of anhydrous spinel peridotites and websterites from the Ronda peridotite (S. Spain). The same elements were also analyzed by LA-ICPMS in the silicates of three peridotites. The results obtained by solution-ICPMS and LA-ICPMS are similar for the less (HREE) and the most incompatible (Rb–Ba) elements, and provide comparable inter-element distribution coefficients (Dxt/cpx) for these elements. However, moderately incompatible elements (typically LREE) show significant discrepancies between solution and in situ analyses. Dopx/cpx and Dol/cpx for these elements are generally lower for solution than for in situ analyses. Dxt/cpx for MREE, HREE, Zr and Hf are consistent with experimental values. In contrast, Dxt/cpx for highly incompatible elements and LREE are higher than expected from available experimental data and/or crystal-chemical considerations. The observed Dxt/cpx for the most incompatible trace elements may be explained by very small amounts of melt/fluid, or solid, inclusions trapped in these minerals. Inclusions would affect both solution- and LA-ICPMS data, but their proportion would be less important for LA-ICPMS analyses. We show with a mixing model that an extremely small amount of equilibrium partial melt (typically 0.01–0.1%) trapped in minerals is sufficient to increase the Dopx/cpx for HIE and LREE by a factor of 5–20 and the Dol/cpx by two or three orders of magnitude. Similar effects may be produced by sub-percent amounts of HIE-rich fluids of solid microphases. Such very small volumes of inclusions may pass unnoticed during mineral handpicking and LA-ICPMS analysis. Hence, Dxt/cpx for HIE and LREE should be considered cautiously when mineral analyses are used to constrain melt processes and mantle composition. Mass balance calculations were performed for a nominally anhydrous spinel harzburgite sample. Similar to previous studies, the mass balance indicates important discrepancies for HIE between peridotite composition reconstructed from mineral analyses (bulk and in situ) and whole rock composition. The major silicate minerals are the main repositories for REE, Zr and Hf (>75% of the whole rock budget), and also host ≥65% of Th and U. In contrast, more than 80% of the budget of Rb, Ba and Nb, and about 60% of Ta and Sr, is hosted by micro-components in grain boundaries (GBC) or trapped in minerals (inclusions). Alone, the GBC accounts for 50% of the budget of Nb and Ta. The inclusions are an important repository for Rb (39%), Nb (40%) and Sr (49%). The GBC and inclusion repositories display very similar trace element signatures, suggesting that they were once a single repository (<1 wt%) now re-distributed in different textural components. This repository could be a combination of hydrous phases and/or Ti oxides, and/or melt/fluid inclusions of mantle origin.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>peridotite</json:string>
<json:string>dxtacpx</json:string>
<json:string>spinel</json:string>
<json:string>dopxacpx</json:string>
<json:string>lree</json:string>
<json:string>dolacpx</json:string>
<json:string>epsl</json:string>
<json:string>garrido</json:string>
<json:string>partitioning</json:string>
<json:string>planetary science letters</json:string>
<json:string>ronda</json:string>
<json:string>hree</json:string>
<json:string>silicate</json:string>
<json:string>mree</json:string>
<json:string>xenolith</json:string>
<json:string>whole rock</json:string>
<json:string>trace elements</json:string>
<json:string>incompatible elements</json:string>
<json:string>amphibole</json:string>
<json:string>geochim</json:string>
<json:string>cosmochim</json:string>
<json:string>incompatible trace elements</json:string>
<json:string>websterites</json:string>
<json:string>clinopyroxene</json:string>
<json:string>acta</json:string>
<json:string>inclusion</json:string>
<json:string>lett</json:string>
<json:string>harzburgite</json:string>
<json:string>petrol</json:string>
<json:string>laser</json:string>
<json:string>olivine</json:string>
<json:string>earth planet</json:string>
<json:string>bodinier</json:string>
<json:string>icpms</json:string>
<json:string>massif</json:string>
<json:string>incompatible</json:string>
<json:string>lherzolites</json:string>
<json:string>microphases</json:string>
<json:string>phlogopite</json:string>
<json:string>anhydrous spinel peridotites</json:string>
<json:string>mantle processes</json:string>
<json:string>detection limits</json:string>
<json:string>good correspondence</json:string>
<json:string>rare earth elements</json:string>
<json:string>other hand</json:string>
<json:string>trace element patterns</json:string>
<json:string>bulk dxtacpx</json:string>
<json:string>whole rock budget</json:string>
<json:string>anhydrous</json:string>
<json:string>mineral modes</json:string>
<json:string>high values</json:string>
<json:string>ronda peridotite</json:string>
<json:string>dxtacpx values</json:string>
<json:string>background dataset1</json:string>
<json:string>peridotite samples</json:string>
<json:string>major silicates</json:string>
<json:string>silicate minerals</json:string>
<json:string>experimental values</json:string>
<json:string>mantle origin</json:string>
<json:string>mineral</json:string>
<json:string>anomaly</json:string>
<json:string>main repositories</json:string>
<json:string>bulk values</json:string>
<json:string>right panel</json:string>
<json:string>error bars</json:string>
<json:string>higher proportions</json:string>
<json:string>basaltic systems</json:string>
<json:string>upper bounds</json:string>
<json:string>more details</json:string>
<json:string>bulk analyses</json:string>
<json:string>spinel harzburgite</json:string>
<json:string>same sample</json:string>
<json:string>ronda peridotites</json:string>
<json:string>bulk spinel</json:string>
<json:string>whole rock analyses</json:string>
<json:string>mantle xenoliths</json:string>
<json:string>upper mantle</json:string>
<json:string>spinel peridotites</json:string>
<json:string>procedural blanks</json:string>
<json:string>bulk dopxacpx</json:string>
<json:string>bulk dolacpx</json:string>
<json:string>peridotite massifs</json:string>
<json:string>ablation</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Carlos J. Garrido</name>
<affiliations>
<json:string>E-mail: garrido@babouin.dstu.univ-montp2.fr</json:string>
<json:string>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean-Louis Bodinier</name>
<affiliations>
<json:string>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Olivier Alard</name>
<affiliations>
<json:string>GEMOC, School of Earth and Planetary Sciences, Macquarie University, Sydney, N.S.W. 2109, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>trace elements</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>partitioning</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>inclusions</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>spinel peridotite</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>websterite</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Serrania de Ronda</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>lithosphere</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-8SR7MBSN-7</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: We report solution-ICPMS analyses of Rb, Ba, Th, U, Nb, Ta, REE, Sr, Zr and Hf for acid-leached minerals of anhydrous spinel peridotites and websterites from the Ronda peridotite (S. Spain). The same elements were also analyzed by LA-ICPMS in the silicates of three peridotites. The results obtained by solution-ICPMS and LA-ICPMS are similar for the less (HREE) and the most incompatible (Rb–Ba) elements, and provide comparable inter-element distribution coefficients (Dxt/cpx) for these elements. However, moderately incompatible elements (typically LREE) show significant discrepancies between solution and in situ analyses. Dopx/cpx and Dol/cpx for these elements are generally lower for solution than for in situ analyses. Dxt/cpx for MREE, HREE, Zr and Hf are consistent with experimental values. In contrast, Dxt/cpx for highly incompatible elements and LREE are higher than expected from available experimental data and/or crystal-chemical considerations. The observed Dxt/cpx for the most incompatible trace elements may be explained by very small amounts of melt/fluid, or solid, inclusions trapped in these minerals. Inclusions would affect both solution- and LA-ICPMS data, but their proportion would be less important for LA-ICPMS analyses. We show with a mixing model that an extremely small amount of equilibrium partial melt (typically 0.01–0.1%) trapped in minerals is sufficient to increase the Dopx/cpx for HIE and LREE by a factor of 5–20 and the Dol/cpx by two or three orders of magnitude. Similar effects may be produced by sub-percent amounts of HIE-rich fluids of solid microphases. Such very small volumes of inclusions may pass unnoticed during mineral handpicking and LA-ICPMS analysis. Hence, Dxt/cpx for HIE and LREE should be considered cautiously when mineral analyses are used to constrain melt processes and mantle composition. Mass balance calculations were performed for a nominally anhydrous spinel harzburgite sample. Similar to previous studies, the mass balance indicates important discrepancies for HIE between peridotite composition reconstructed from mineral analyses (bulk and in situ) and whole rock composition. The major silicate minerals are the main repositories for REE, Zr and Hf (>75% of the whole rock budget), and also host ≥65% of Th and U. In contrast, more than 80% of the budget of Rb, Ba and Nb, and about 60% of Ta and Sr, is hosted by micro-components in grain boundaries (GBC) or trapped in minerals (inclusions). Alone, the GBC accounts for 50% of the budget of Nb and Ta. The inclusions are an important repository for Rb (39%), Nb (40%) and Sr (49%). The GBC and inclusion repositories display very similar trace element signatures, suggesting that they were once a single repository (>1 wt%) now re-distributed in different textural components. This repository could be a combination of hydrous phases and/or Ti oxides, and/or melt/fluid inclusions of mantle origin.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>8589</pdfWordCount>
<pdfCharCount>52052</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>18</pdfPageCount>
<pdfPageSize>544 x 743 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>448</abstractWordCount>
<abstractCharCount>2943</abstractCharCount>
<keywordCount>7</keywordCount>
</qualityIndicators>
<title>Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite</title>
<pii>
<json:string>S0012-821X(00)00201-6</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Earth and Planetary Science Letters</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2000</publicationDate>
<issn>
<json:string>0012-821X</json:string>
</issn>
<pii>
<json:string>S0012-821X(00)X0067-2</json:string>
</pii>
<volume>181</volume>
<issue>3</issue>
<pages>
<first>341</first>
<last>358</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2000</json:string>
<json:string>17-8-00</json:string>
<json:string>17-8-00 352</json:string>
<json:string>17-8-00 346</json:string>
<json:string>17-8-00 342</json:string>
<json:string>17-8-00 348</json:string>
<json:string>17-8-00 350</json:string>
<json:string>17-8-00 344</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>European Commission</json:string>
<json:string>Macquarie University</json:string>
<json:string>Australia Received</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Dxtacpx</json:string>
<json:string>Hf</json:string>
<json:string>Cpx</json:string>
<json:string>S. Pourtales</json:string>
<json:string>Clinopyroxenes</json:string>
<json:string>Olivines</json:string>
<json:string>Charles Langmuir</json:string>
<json:string>La Ce</json:string>
<json:string>Zr</json:string>
<json:string>The</json:string>
<json:string>L. Savoyant</json:string>
<json:string>N.J. Pearson</json:string>
<json:string>Eugene Bataillon</json:string>
<json:string>Ol</json:string>
<json:string>W.L. Gri</json:string>
<json:string>S.Y. O'Reilly</json:string>
<json:string>Stosch</json:string>
<json:string>Fred Frey</json:string>
</persName>
<placeName>
<json:string>Montpellier</json:string>
<json:string>Australia</json:string>
<json:string>Algeria</json:string>
<json:string>France</json:string>
<json:string>Italy</json:string>
<json:string>Spain</json:string>
<json:string>Sydney</json:string>
</placeName>
<ref_url>
<json:string>http://www.elsevier.nl/locate/epsl</json:string>
</ref_url>
<ref_bibl>
<json:string>[18,22]</json:string>
<json:string>[34]</json:string>
<json:string>[15,16]</json:string>
<json:string>[1,18,20,37,44]</json:string>
<json:string>[18]</json:string>
<json:string>[22]</json:string>
<json:string>[31,32]</json:string>
<json:string>Bodinier et al. [22]</json:string>
<json:string>[8]</json:string>
<json:string>[17]</json:string>
<json:string>[5,6]</json:string>
<json:string>[1]</json:string>
<json:string>Eggins et al. [16]</json:string>
<json:string>[21]</json:string>
<json:string>Ionov et al. [11]</json:string>
<json:string>[3,21,41]</json:string>
<json:string>[16,18,22,23,43]</json:string>
<json:string>Godard et al. [12]</json:string>
<json:string>[42]</json:string>
<json:string>[3,4]</json:string>
<json:string>[16,18]</json:string>
<json:string>[7]</json:string>
<json:string>[36]</json:string>
<json:string>[16,19,33]</json:string>
<json:string>[9]</json:string>
<json:string>C.J. Garrido et al.</json:string>
<json:string>[16,28]</json:string>
<json:string>[2]</json:string>
<json:string>[35]</json:string>
<json:string>[5,6,8]</json:string>
<json:string>Norman et al. [13]</json:string>
<json:string>[29,30]</json:string>
<json:string>[19]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-8SR7MBSN-7</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - geochemistry & geophysics</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - earth & environmental sciences</json:string>
<json:string>3 - geochemistry & geophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth and Planetary Sciences (miscellaneous)</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geochemistry and Petrology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geophysics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - biochimie analytique, structurale et metabolique</json:string>
</inist>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1016/S0012-821X(00)00201-6</json:string>
</doi>
<id>30644AABD11195CC65E058722BA50A60DBA857B9</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/30644AABD11195CC65E058722BA50A60DBA857B9/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/30644AABD11195CC65E058722BA50A60DBA857B9/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/30644AABD11195CC65E058722BA50A60DBA857B9/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2000 Elsevier Science B.V.</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Left panel: PUM-normalized [17] trace element patterns of acid-leached clinopyroxene, orthopyroxene and olivine separates analyzed by solution-ICPMS for selected peridotite samples. Right panel: PUM-normalized patterns for in situ LA-ICPMS analyses (open symbols) and for solution-ICPMS analyses of acid-leached minerals, for three peridotite samples. Error bars are 2σ. Arrows represent upper bounds for LA-ICPMS analyses (black arrows=RC147; gray arrows=Ro144).</note>
<note type="content">Fig. 2: PUM-normalized [17] trace element patterns of acid-leached spinels from peridotites.</note>
<note type="content">Fig. 3: PUM-normalized [17] trace element patterns of acid-leached clinopyroxenes and orthopyroxenes from websterites.</note>
<note type="content">Fig. 4: Concentration ratio of the bulk analysis of the acid-leached mineral separates (solution-ICPMS) to the average of their in situ analyses (LA-ICPMS) in the same sample (pyroxenes=RC147, Ro144 and Ro151; olivine=RC147 and Ro144). Bar are 2σ. For clarity, the y-axis has been expanded in the interval 0–2.</note>
<note type="content">Fig. 5: Average bulk (closed symbols) and in situ (open symbols) Dopx/cpx, Dol/cpx and Dsp/cpx (only bulk values available). The triangles represent upper bounds for in situ Dxt/cpx. Error bars are 2σ. Trace elements are arranged according to their incompatibility degree in the peridotite–basalt system [17].</note>
<note type="content">Fig. 6: Plots of Dopx/cpx versus Dol/cpx for trace elements, also comparing bulk and in situ Dxt/cpx, for two peridotite samples. Trace elements are grouped according to their incompatibility degree in the peridotite–basalt system [17].</note>
<note type="content">Fig. 7: Plots of Dopx/cpx and Dol/cpx for incompatible trace elements arranged by order of incompatibility, showing the results of mixing models involving the minerals and inclusions of equilibrium trapped melt (left panel) and amphibole (right panel). ‘Inclusion-free’ Dxt/cpx were established by combining experimental Dxt/melt in basaltic systems [26,27,45–48] – except for Dxt/cpx for Pr, Gd, Tb, Ho and Tm that were interpolated – with Dopx/melt and Dol/melt provided by Kelemen et al. [28]. Dopx/cpx and Dol/cpx for Pr, Tb, Ho and Tm were interpolated. Dol/cpx for Th and U, and Dopx/cpx and Dol/cpx for Ba, were arbitrarily set at 10−7. Two different sets of Dxt/cpx are used for Nb and Ta: one was established from experimental Dxt/melt values (dashed lines) and the other one was arbitrarily fixed one order of magnitude lower (solid lines). The two different sets of values provide very similar results, showing that the mixing models are poorly sensitive to the actual D values for the most incompatible elements. Trapped melt model: effect of variable proportions of trapped melt produced by equilibrium partial melting; Trapped amphibole model: effect of variable proportions of amphibole inclusions in chemical equilibrium with the host silicates. The Damp/cpx values used for this model are given in Table 3.</note>
<note type="content">Fig. 8: Cumulative percentage bar diagram showing the contribution to the whole rock budget of different constituents of the spinel harzburgite RC147 for LILE, Th, U, Sr and HFSE (upper) and selected REE (lower). The individual contribution of major silicates (Ol=72±6%; Opx=20±3%; Cpx=6±1%) was calculated using in situ LA-ICPMS data. The dashed columns indicate the total contribution of: (a) bulk spinel, (b) inclusions in silicates (‘inclusions’), and (c) the grain boundary component. Error bars are 1σ. Question marks indicate deficits greater than 10% that cannot be assigned to bulk spinel and/or micro-components, because of large accumulated uncertainties. See text and Table 4 for more details.</note>
<note type="content">Fig. 9: PUM-normalized [17] trace element patterns of: (A) whole rock, and BMS and MS contributions in the harzburgite RC147, compared with the patterns of bulk and in situ analyses of clinopyroxene in this sample; (B) total deficit, inclusions in silicates and the grain boundary contribution for the same sample. Only well constrained deficits are shown. Error bars are 2σ.</note>
<note type="content">Fig. 10: Bar plot showing for sample RC147 the relative differences (in %) of selected trace elements between whole rock and: (1) the MS contribution (MS); (2) the MS contribution plus 1.8% low Ti amphibole (+Amp); (3) the MS contribution plus 0.13% phlogopite (+Phl); (4) the MS contribution plus 0.5% phlogopite and 0.5% ilmenite. Amphibole and phlogopite are considered to be in chemical equilibrium with Cpx and their composition was calculated from the Damp/cpx and Dphl/cpx values given in Table 3 (for model 3 we used the Dphl/cpx in column 1 and for model 4 the Dphl/cpx in column 2) and the in situ analyses of Cpx in sample RC147. For ilmenite, we used the ilmenite analysis reported by Bodinier et al. [22] for Nb, Ta and Zr were extrapolated based on Nb/Ta and Nb/Zr ratios of experimental data on basaltic systems, and other incompatible elements were set at 0.</note>
<note type="content">Table 1: Detection limits, procedural blanks and reproducibility of solution-ICPMS analyses, and detection limits of LA-ICPMS analyses</note>
<note type="content">Table 2: Whole rock and mineral trace element composition of harzburgite RC147</note>
<note type="content">Table 3: Inter-mineral distribution coefficients relative to clinopyroxene</note>
<note type="content">Table 4: Mass balance inversion results for spinel harzburgite RC147</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Carlos J.</forename>
<surname>Garrido</surname>
</persName>
<email>garrido@babouin.dstu.univ-montp2.fr</email>
<note type="correspondence">
<p>Corresponding author. Tel.: +33-467-143943; Fax: +33-467-143603</p>
</note>
<affiliation>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Jean-Louis</forename>
<surname>Bodinier</surname>
</persName>
<affiliation>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Olivier</forename>
<surname>Alard</surname>
</persName>
<affiliation>GEMOC, School of Earth and Planetary Sciences, Macquarie University, Sydney, N.S.W. 2109, Australia</affiliation>
</author>
<idno type="istex">30644AABD11195CC65E058722BA50A60DBA857B9</idno>
<idno type="DOI">10.1016/S0012-821X(00)00201-6</idno>
<idno type="PII">S0012-821X(00)00201-6</idno>
</analytic>
<monogr>
<title level="j">Earth and Planetary Science Letters</title>
<title level="j" type="abbrev">EPSL</title>
<idno type="pISSN">0012-821X</idno>
<idno type="PII">S0012-821X(00)X0067-2</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">181</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="341">341</biblScope>
<biblScope unit="page" to="358">358</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>We report solution-ICPMS analyses of Rb, Ba, Th, U, Nb, Ta, REE, Sr, Zr and Hf for acid-leached minerals of anhydrous spinel peridotites and websterites from the Ronda peridotite (S. Spain). The same elements were also analyzed by LA-ICPMS in the silicates of three peridotites. The results obtained by solution-ICPMS and LA-ICPMS are similar for the less (HREE) and the most incompatible (Rb–Ba) elements, and provide comparable inter-element distribution coefficients (Dxt/cpx) for these elements. However, moderately incompatible elements (typically LREE) show significant discrepancies between solution and in situ analyses. Dopx/cpx and Dol/cpx for these elements are generally lower for solution than for in situ analyses. Dxt/cpx for MREE, HREE, Zr and Hf are consistent with experimental values. In contrast, Dxt/cpx for highly incompatible elements and LREE are higher than expected from available experimental data and/or crystal-chemical considerations. The observed Dxt/cpx for the most incompatible trace elements may be explained by very small amounts of melt/fluid, or solid, inclusions trapped in these minerals. Inclusions would affect both solution- and LA-ICPMS data, but their proportion would be less important for LA-ICPMS analyses. We show with a mixing model that an extremely small amount of equilibrium partial melt (typically 0.01–0.1%) trapped in minerals is sufficient to increase the Dopx/cpx for HIE and LREE by a factor of 5–20 and the Dol/cpx by two or three orders of magnitude. Similar effects may be produced by sub-percent amounts of HIE-rich fluids of solid microphases. Such very small volumes of inclusions may pass unnoticed during mineral handpicking and LA-ICPMS analysis. Hence, Dxt/cpx for HIE and LREE should be considered cautiously when mineral analyses are used to constrain melt processes and mantle composition. Mass balance calculations were performed for a nominally anhydrous spinel harzburgite sample. Similar to previous studies, the mass balance indicates important discrepancies for HIE between peridotite composition reconstructed from mineral analyses (bulk and in situ) and whole rock composition. The major silicate minerals are the main repositories for REE, Zr and Hf (>75% of the whole rock budget), and also host ≥65% of Th and U. In contrast, more than 80% of the budget of Rb, Ba and Nb, and about 60% of Ta and Sr, is hosted by micro-components in grain boundaries (GBC) or trapped in minerals (inclusions). Alone, the GBC accounts for 50% of the budget of Nb and Ta. The inclusions are an important repository for Rb (39%), Nb (40%) and Sr (49%). The GBC and inclusion repositories display very similar trace element signatures, suggesting that they were once a single repository (<1 wt%) now re-distributed in different textural components. This repository could be a combination of hydrous phases and/or Ti oxides, and/or melt/fluid inclusions of mantle origin.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>trace elements</term>
</item>
<item>
<term>partitioning</term>
</item>
<item>
<term>inclusions</term>
</item>
<item>
<term>spinel peridotite</term>
</item>
<item>
<term>websterite</term>
</item>
<item>
<term>Serrania de Ronda</term>
</item>
<item>
<term>lithosphere</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/30644AABD11195CC65E058722BA50A60DBA857B9/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
<istex:entity SYSTEM="mmc1" NDATA="APPLICATION" name="mmc1"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>EPSL</jid>
<aid>5557</aid>
<ce:pii>S0012-821X(00)00201-6</ce:pii>
<ce:doi>10.1016/S0012-821X(00)00201-6</ce:doi>
<ce:copyright type="full-transfer" year="2000">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Carlos J.</ce:given-name>
<ce:surname>Garrido</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>garrido@babouin.dstu.univ-montp2.fr</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>Jean-Louis</ce:given-name>
<ce:surname>Bodinier</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Olivier</ce:given-name>
<ce:surname>Alard</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>GEMOC, School of Earth and Planetary Sciences, Macquarie University, Sydney, N.S.W. 2109, Australia</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +33-467-143943; Fax: +33-467-143603</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="15" month="5" year="1999"></ce:date-received>
<ce:date-accepted day="22" month="6" year="2000"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>We report solution-ICPMS analyses of Rb, Ba, Th, U, Nb, Ta, REE, Sr, Zr and Hf for acid-leached minerals of anhydrous spinel peridotites and websterites from the Ronda peridotite (S. Spain). The same elements were also analyzed by LA-ICPMS in the silicates of three peridotites. The results obtained by solution-ICPMS and LA-ICPMS are similar for the less (HREE) and the most incompatible (Rb–Ba) elements, and provide comparable inter-element distribution coefficients (
<ce:italic>D</ce:italic>
<ce:sup>xt/cpx</ce:sup>
) for these elements. However, moderately incompatible elements (typically LREE) show significant discrepancies between solution and in situ analyses.
<ce:italic>D</ce:italic>
<ce:sup>opx/cpx</ce:sup>
and
<ce:italic>D</ce:italic>
<ce:sup>ol/cpx</ce:sup>
for these elements are generally lower for solution than for in situ analyses.
<ce:italic>D</ce:italic>
<ce:sup>xt/cpx</ce:sup>
for MREE, HREE, Zr and Hf are consistent with experimental values. In contrast,
<ce:italic>D</ce:italic>
<ce:sup>xt/cpx</ce:sup>
for highly incompatible elements and LREE are higher than expected from available experimental data and/or crystal-chemical considerations. The observed
<ce:italic>D</ce:italic>
<ce:sup>xt/cpx</ce:sup>
for the most incompatible trace elements may be explained by very small amounts of melt/fluid, or solid, inclusions trapped in these minerals. Inclusions would affect both solution- and LA-ICPMS data, but their proportion would be less important for LA-ICPMS analyses. We show with a mixing model that an extremely small amount of equilibrium partial melt (typically 0.01–0.1%) trapped in minerals is sufficient to increase the
<ce:italic>D</ce:italic>
<ce:sup>opx/cpx</ce:sup>
for HIE and LREE by a factor of 5–20 and the
<ce:italic>D</ce:italic>
<ce:sup>ol/cpx</ce:sup>
by two or three orders of magnitude. Similar effects may be produced by sub-percent amounts of HIE-rich fluids of solid microphases. Such very small volumes of inclusions may pass unnoticed during mineral handpicking and LA-ICPMS analysis. Hence,
<ce:italic>D</ce:italic>
<ce:sup>xt/cpx</ce:sup>
for HIE and LREE should be considered cautiously when mineral analyses are used to constrain melt processes and mantle composition. Mass balance calculations were performed for a nominally anhydrous spinel harzburgite sample. Similar to previous studies, the mass balance indicates important discrepancies for HIE between peridotite composition reconstructed from mineral analyses (bulk and in situ) and whole rock composition. The major silicate minerals are the main repositories for REE, Zr and Hf (>75% of the whole rock budget), and also host ≥65% of Th and U. In contrast, more than 80% of the budget of Rb, Ba and Nb, and about 60% of Ta and Sr, is hosted by micro-components in grain boundaries (GBC) or trapped in minerals (inclusions). Alone, the GBC accounts for 50% of the budget of Nb and Ta. The inclusions are an important repository for Rb (39%), Nb (40%) and Sr (49%). The GBC and inclusion repositories display very similar trace element signatures, suggesting that they were once a single repository (<1 wt%) now re-distributed in different textural components. This repository could be a combination of hydrous phases and/or Ti oxides, and/or melt/fluid inclusions of mantle origin.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>trace elements</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>partitioning</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>inclusions</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>spinel peridotite</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>websterite</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Serrania de Ronda</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>lithosphere</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite</title>
</titleInfo>
<name type="personal">
<namePart type="given">Carlos J.</namePart>
<namePart type="family">Garrido</namePart>
<affiliation>E-mail: garrido@babouin.dstu.univ-montp2.fr</affiliation>
<affiliation>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</affiliation>
<description>Corresponding author. Tel.: +33-467-143943; Fax: +33-467-143603</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean-Louis</namePart>
<namePart type="family">Bodinier</namePart>
<affiliation>ISTEEM, Laboratoire de Tectonophysique, UMR 5568, CNRS et Université de Montpellier 2, Case 49, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olivier</namePart>
<namePart type="family">Alard</namePart>
<affiliation>GEMOC, School of Earth and Planetary Sciences, Macquarie University, Sydney, N.S.W. 2109, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: We report solution-ICPMS analyses of Rb, Ba, Th, U, Nb, Ta, REE, Sr, Zr and Hf for acid-leached minerals of anhydrous spinel peridotites and websterites from the Ronda peridotite (S. Spain). The same elements were also analyzed by LA-ICPMS in the silicates of three peridotites. The results obtained by solution-ICPMS and LA-ICPMS are similar for the less (HREE) and the most incompatible (Rb–Ba) elements, and provide comparable inter-element distribution coefficients (Dxt/cpx) for these elements. However, moderately incompatible elements (typically LREE) show significant discrepancies between solution and in situ analyses. Dopx/cpx and Dol/cpx for these elements are generally lower for solution than for in situ analyses. Dxt/cpx for MREE, HREE, Zr and Hf are consistent with experimental values. In contrast, Dxt/cpx for highly incompatible elements and LREE are higher than expected from available experimental data and/or crystal-chemical considerations. The observed Dxt/cpx for the most incompatible trace elements may be explained by very small amounts of melt/fluid, or solid, inclusions trapped in these minerals. Inclusions would affect both solution- and LA-ICPMS data, but their proportion would be less important for LA-ICPMS analyses. We show with a mixing model that an extremely small amount of equilibrium partial melt (typically 0.01–0.1%) trapped in minerals is sufficient to increase the Dopx/cpx for HIE and LREE by a factor of 5–20 and the Dol/cpx by two or three orders of magnitude. Similar effects may be produced by sub-percent amounts of HIE-rich fluids of solid microphases. Such very small volumes of inclusions may pass unnoticed during mineral handpicking and LA-ICPMS analysis. Hence, Dxt/cpx for HIE and LREE should be considered cautiously when mineral analyses are used to constrain melt processes and mantle composition. Mass balance calculations were performed for a nominally anhydrous spinel harzburgite sample. Similar to previous studies, the mass balance indicates important discrepancies for HIE between peridotite composition reconstructed from mineral analyses (bulk and in situ) and whole rock composition. The major silicate minerals are the main repositories for REE, Zr and Hf (>75% of the whole rock budget), and also host ≥65% of Th and U. In contrast, more than 80% of the budget of Rb, Ba and Nb, and about 60% of Ta and Sr, is hosted by micro-components in grain boundaries (GBC) or trapped in minerals (inclusions). Alone, the GBC accounts for 50% of the budget of Nb and Ta. The inclusions are an important repository for Rb (39%), Nb (40%) and Sr (49%). The GBC and inclusion repositories display very similar trace element signatures, suggesting that they were once a single repository (<1 wt%) now re-distributed in different textural components. This repository could be a combination of hydrous phases and/or Ti oxides, and/or melt/fluid inclusions of mantle origin.</abstract>
<note type="content">Fig. 1: Left panel: PUM-normalized [17] trace element patterns of acid-leached clinopyroxene, orthopyroxene and olivine separates analyzed by solution-ICPMS for selected peridotite samples. Right panel: PUM-normalized patterns for in situ LA-ICPMS analyses (open symbols) and for solution-ICPMS analyses of acid-leached minerals, for three peridotite samples. Error bars are 2σ. Arrows represent upper bounds for LA-ICPMS analyses (black arrows=RC147; gray arrows=Ro144).</note>
<note type="content">Fig. 2: PUM-normalized [17] trace element patterns of acid-leached spinels from peridotites.</note>
<note type="content">Fig. 3: PUM-normalized [17] trace element patterns of acid-leached clinopyroxenes and orthopyroxenes from websterites.</note>
<note type="content">Fig. 4: Concentration ratio of the bulk analysis of the acid-leached mineral separates (solution-ICPMS) to the average of their in situ analyses (LA-ICPMS) in the same sample (pyroxenes=RC147, Ro144 and Ro151; olivine=RC147 and Ro144). Bar are 2σ. For clarity, the y-axis has been expanded in the interval 0–2.</note>
<note type="content">Fig. 5: Average bulk (closed symbols) and in situ (open symbols) Dopx/cpx, Dol/cpx and Dsp/cpx (only bulk values available). The triangles represent upper bounds for in situ Dxt/cpx. Error bars are 2σ. Trace elements are arranged according to their incompatibility degree in the peridotite–basalt system [17].</note>
<note type="content">Fig. 6: Plots of Dopx/cpx versus Dol/cpx for trace elements, also comparing bulk and in situ Dxt/cpx, for two peridotite samples. Trace elements are grouped according to their incompatibility degree in the peridotite–basalt system [17].</note>
<note type="content">Fig. 7: Plots of Dopx/cpx and Dol/cpx for incompatible trace elements arranged by order of incompatibility, showing the results of mixing models involving the minerals and inclusions of equilibrium trapped melt (left panel) and amphibole (right panel). ‘Inclusion-free’ Dxt/cpx were established by combining experimental Dxt/melt in basaltic systems [26,27,45–48] – except for Dxt/cpx for Pr, Gd, Tb, Ho and Tm that were interpolated – with Dopx/melt and Dol/melt provided by Kelemen et al. [28]. Dopx/cpx and Dol/cpx for Pr, Tb, Ho and Tm were interpolated. Dol/cpx for Th and U, and Dopx/cpx and Dol/cpx for Ba, were arbitrarily set at 10−7. Two different sets of Dxt/cpx are used for Nb and Ta: one was established from experimental Dxt/melt values (dashed lines) and the other one was arbitrarily fixed one order of magnitude lower (solid lines). The two different sets of values provide very similar results, showing that the mixing models are poorly sensitive to the actual D values for the most incompatible elements. Trapped melt model: effect of variable proportions of trapped melt produced by equilibrium partial melting; Trapped amphibole model: effect of variable proportions of amphibole inclusions in chemical equilibrium with the host silicates. The Damp/cpx values used for this model are given in Table 3.</note>
<note type="content">Fig. 8: Cumulative percentage bar diagram showing the contribution to the whole rock budget of different constituents of the spinel harzburgite RC147 for LILE, Th, U, Sr and HFSE (upper) and selected REE (lower). The individual contribution of major silicates (Ol=72±6%; Opx=20±3%; Cpx=6±1%) was calculated using in situ LA-ICPMS data. The dashed columns indicate the total contribution of: (a) bulk spinel, (b) inclusions in silicates (‘inclusions’), and (c) the grain boundary component. Error bars are 1σ. Question marks indicate deficits greater than 10% that cannot be assigned to bulk spinel and/or micro-components, because of large accumulated uncertainties. See text and Table 4 for more details.</note>
<note type="content">Fig. 9: PUM-normalized [17] trace element patterns of: (A) whole rock, and BMS and MS contributions in the harzburgite RC147, compared with the patterns of bulk and in situ analyses of clinopyroxene in this sample; (B) total deficit, inclusions in silicates and the grain boundary contribution for the same sample. Only well constrained deficits are shown. Error bars are 2σ.</note>
<note type="content">Fig. 10: Bar plot showing for sample RC147 the relative differences (in %) of selected trace elements between whole rock and: (1) the MS contribution (MS); (2) the MS contribution plus 1.8% low Ti amphibole (+Amp); (3) the MS contribution plus 0.13% phlogopite (+Phl); (4) the MS contribution plus 0.5% phlogopite and 0.5% ilmenite. Amphibole and phlogopite are considered to be in chemical equilibrium with Cpx and their composition was calculated from the Damp/cpx and Dphl/cpx values given in Table 3 (for model 3 we used the Dphl/cpx in column 1 and for model 4 the Dphl/cpx in column 2) and the in situ analyses of Cpx in sample RC147. For ilmenite, we used the ilmenite analysis reported by Bodinier et al. [22] for Nb, Ta and Zr were extrapolated based on Nb/Ta and Nb/Zr ratios of experimental data on basaltic systems, and other incompatible elements were set at 0.</note>
<note type="content">Table 1: Detection limits, procedural blanks and reproducibility of solution-ICPMS analyses, and detection limits of LA-ICPMS analyses</note>
<note type="content">Table 2: Whole rock and mineral trace element composition of harzburgite RC147</note>
<note type="content">Table 3: Inter-mineral distribution coefficients relative to clinopyroxene</note>
<note type="content">Table 4: Mass balance inversion results for spinel harzburgite RC147</note>
<subject>
<genre>Keywords</genre>
<topic>trace elements</topic>
<topic>partitioning</topic>
<topic>inclusions</topic>
<topic>spinel peridotite</topic>
<topic>websterite</topic>
<topic>Serrania de Ronda</topic>
<topic>lithosphere</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Earth and Planetary Science Letters</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>EPSL</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">20000915</dateIssued>
</originInfo>
<identifier type="ISSN">0012-821X</identifier>
<identifier type="PII">S0012-821X(00)X0067-2</identifier>
<part>
<date>20000915</date>
<detail type="volume">
<number>181</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>3</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>271</start>
<end>472</end>
</extent>
<extent unit="pages">
<start>341</start>
<end>358</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">30644AABD11195CC65E058722BA50A60DBA857B9</identifier>
<identifier type="ark">ark:/67375/6H6-8SR7MBSN-7</identifier>
<identifier type="DOI">10.1016/S0012-821X(00)00201-6</identifier>
<identifier type="PII">S0012-821X(00)00201-6</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2000 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©2000</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/30644AABD11195CC65E058722BA50A60DBA857B9/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000926 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000926 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:30644AABD11195CC65E058722BA50A60DBA857B9
   |texte=   Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024