Serveur d'exploration autour du libre accès en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Physicochemical and Biological Evaluation of siRNA Polyplexes Based on PEGylated Poly(amido amine)s

Identifieur interne : 000181 ( Pmc/Corpus ); précédent : 000180; suivant : 000182

Physicochemical and Biological Evaluation of siRNA Polyplexes Based on PEGylated Poly(amido amine)s

Auteurs : Pieter Vader ; Leonardus J. Van Der Aa ; Johan F. J. Engbersen ; Gert Storm ; Raymond M. Schiffelers

Source :

RBID : PMC:3264854

Abstract

ABSTRACTPurpose

Use of RNA interference as novel therapeutic strategy is hampered by inefficient delivery of its mediator, siRNA, to target cells. Cationic polymers have been thoroughly investigated for this purpose but often display unfavorable characteristics for systemic administration, such as interactions with serum and/or toxicity.

Methods

We report the synthesis of a new PEGylated polymer based on biodegradable poly(amido amine)s with disulfide linkages in the backbone. Various amounts of PEGylated polymers were mixed with their unPEGylated counterparts prior to polyplex formation to alter PEG content in the final complex.

Results

PEGylation effectively decreased polyplex surface charge, salt- or serum-induced aggregation and interaction with erythrocytes. Increasing amount of PEG in formulation also reduced its stability against heparin displacement, cellular uptake and subsequent silencing efficiency. Yet, for polyplexes with high PEG content, significant gene silencing efficacy was found, which was combined with almost no toxicity.

Conclusions

PEGylated poly(amido amine)s are promising carriers for systemic siRNA delivery in vivo.


Url:
DOI: 10.1007/s11095-011-0545-z
PubMed: 21833793
PubMed Central: 3264854

Links to Exploration step

PMC:3264854

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Physicochemical and Biological Evaluation of siRNA Polyplexes Based on PEGylated Poly(amido amine)s</title>
<author>
<name sortKey="Vader, Pieter" sort="Vader, Pieter" uniqKey="Vader P" first="Pieter" last="Vader">Pieter Vader</name>
<affiliation>
<nlm:aff id="Aff1">Department of Pharmaceutics Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Universiteitsweg 99, 3584 CG Utrecht, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Der Aa, Leonardus J" sort="Van Der Aa, Leonardus J" uniqKey="Van Der Aa L" first="Leonardus J." last="Van Der Aa">Leonardus J. Van Der Aa</name>
<affiliation>
<nlm:aff id="Aff2">Department of Biomedical Chemistry MIRA Institute for Biomedical Technology & Technical Medicine Faculty of Science & Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Engbersen, Johan F J" sort="Engbersen, Johan F J" uniqKey="Engbersen J" first="Johan F. J." last="Engbersen">Johan F. J. Engbersen</name>
<affiliation>
<nlm:aff id="Aff2">Department of Biomedical Chemistry MIRA Institute for Biomedical Technology & Technical Medicine Faculty of Science & Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Storm, Gert" sort="Storm, Gert" uniqKey="Storm G" first="Gert" last="Storm">Gert Storm</name>
<affiliation>
<nlm:aff id="Aff1">Department of Pharmaceutics Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schiffelers, Raymond M" sort="Schiffelers, Raymond M" uniqKey="Schiffelers R" first="Raymond M." last="Schiffelers">Raymond M. Schiffelers</name>
<affiliation>
<nlm:aff id="Aff1">Department of Pharmaceutics Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21833793</idno>
<idno type="pmc">3264854</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264854</idno>
<idno type="RBID">PMC:3264854</idno>
<idno type="doi">10.1007/s11095-011-0545-z</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">000181</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Physicochemical and Biological Evaluation of siRNA Polyplexes Based on PEGylated Poly(amido amine)s</title>
<author>
<name sortKey="Vader, Pieter" sort="Vader, Pieter" uniqKey="Vader P" first="Pieter" last="Vader">Pieter Vader</name>
<affiliation>
<nlm:aff id="Aff1">Department of Pharmaceutics Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">Universiteitsweg 99, 3584 CG Utrecht, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Der Aa, Leonardus J" sort="Van Der Aa, Leonardus J" uniqKey="Van Der Aa L" first="Leonardus J." last="Van Der Aa">Leonardus J. Van Der Aa</name>
<affiliation>
<nlm:aff id="Aff2">Department of Biomedical Chemistry MIRA Institute for Biomedical Technology & Technical Medicine Faculty of Science & Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Engbersen, Johan F J" sort="Engbersen, Johan F J" uniqKey="Engbersen J" first="Johan F. J." last="Engbersen">Johan F. J. Engbersen</name>
<affiliation>
<nlm:aff id="Aff2">Department of Biomedical Chemistry MIRA Institute for Biomedical Technology & Technical Medicine Faculty of Science & Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Storm, Gert" sort="Storm, Gert" uniqKey="Storm G" first="Gert" last="Storm">Gert Storm</name>
<affiliation>
<nlm:aff id="Aff1">Department of Pharmaceutics Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schiffelers, Raymond M" sort="Schiffelers, Raymond M" uniqKey="Schiffelers R" first="Raymond M." last="Schiffelers">Raymond M. Schiffelers</name>
<affiliation>
<nlm:aff id="Aff1">Department of Pharmaceutics Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pharmaceutical Research</title>
<idno type="ISSN">0724-8741</idno>
<idno type="eISSN">1573-904X</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>ABSTRACT</title>
<sec>
<title>Purpose</title>
<p>Use of RNA interference as novel therapeutic strategy is hampered by inefficient delivery of its mediator, siRNA, to target cells. Cationic polymers have been thoroughly investigated for this purpose but often display unfavorable characteristics for systemic administration, such as interactions with serum and/or toxicity.</p>
</sec>
<sec>
<title>Methods</title>
<p>We report the synthesis of a new PEGylated polymer based on biodegradable poly(amido amine)s with disulfide linkages in the backbone. Various amounts of PEGylated polymers were mixed with their unPEGylated counterparts prior to polyplex formation to alter PEG content in the final complex.</p>
</sec>
<sec>
<title>Results</title>
<p>PEGylation effectively decreased polyplex surface charge, salt- or serum-induced aggregation and interaction with erythrocytes. Increasing amount of PEG in formulation also reduced its stability against heparin displacement, cellular uptake and subsequent silencing efficiency. Yet, for polyplexes with high PEG content, significant gene silencing efficacy was found, which was combined with almost no toxicity.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>PEGylated poly(amido amine)s are promising carriers for systemic siRNA delivery
<italic>in vivo</italic>
.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Fougerolles, A" uniqKey="Fougerolles A">A Fougerolles</name>
</author>
<author>
<name sortKey="Vornlocher, Hp" uniqKey="Vornlocher H">HP Vornlocher</name>
</author>
<author>
<name sortKey="Maraganore, J" uniqKey="Maraganore J">J Maraganore</name>
</author>
<author>
<name sortKey="Lieberman, J" uniqKey="Lieberman J">J Lieberman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schiffelers, Rm" uniqKey="Schiffelers R">RM Schiffelers</name>
</author>
<author>
<name sortKey="Woodle, Mc" uniqKey="Woodle M">MC Woodle</name>
</author>
<author>
<name sortKey="Scaria, P" uniqKey="Scaria P">P Scaria</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Howard, Ka" uniqKey="Howard K">KA Howard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Urban Klein, B" uniqKey="Urban Klein B">B Urban-Klein</name>
</author>
<author>
<name sortKey="Werth, S" uniqKey="Werth S">S Werth</name>
</author>
<author>
<name sortKey="Abuharbeid, S" uniqKey="Abuharbeid S">S Abuharbeid</name>
</author>
<author>
<name sortKey="Czubayko, F" uniqKey="Czubayko F">F Czubayko</name>
</author>
<author>
<name sortKey="Aigner, A" uniqKey="Aigner A">A Aigner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sato, A" uniqKey="Sato A">A Sato</name>
</author>
<author>
<name sortKey="Choi, Sw" uniqKey="Choi S">SW Choi</name>
</author>
<author>
<name sortKey="Hirai, M" uniqKey="Hirai M">M Hirai</name>
</author>
<author>
<name sortKey="Yamayoshi, A" uniqKey="Yamayoshi A">A Yamayoshi</name>
</author>
<author>
<name sortKey="Moriyama, R" uniqKey="Moriyama R">R Moriyama</name>
</author>
<author>
<name sortKey="Yamano, T" uniqKey="Yamano T">T Yamano</name>
</author>
<author>
<name sortKey="Takagi, M" uniqKey="Takagi M">M Takagi</name>
</author>
<author>
<name sortKey="Kano, A" uniqKey="Kano A">A Kano</name>
</author>
<author>
<name sortKey="Shimamoto, A" uniqKey="Shimamoto A">A Shimamoto</name>
</author>
<author>
<name sortKey="Maruyama, A" uniqKey="Maruyama A">A Maruyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Howard, Ka" uniqKey="Howard K">KA Howard</name>
</author>
<author>
<name sortKey="Rahbek, Ul" uniqKey="Rahbek U">UL Rahbek</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
<author>
<name sortKey="Damgaard, Ck" uniqKey="Damgaard C">CK Damgaard</name>
</author>
<author>
<name sortKey="Glud, Sz" uniqKey="Glud S">SZ Glud</name>
</author>
<author>
<name sortKey="Andersen, Mo" uniqKey="Andersen M">MO Andersen</name>
</author>
<author>
<name sortKey="Hovgaard, Mb" uniqKey="Hovgaard M">MB Hovgaard</name>
</author>
<author>
<name sortKey="Schmitz, A" uniqKey="Schmitz A">A Schmitz</name>
</author>
<author>
<name sortKey="Nyengaard, Jr" uniqKey="Nyengaard J">JR Nyengaard</name>
</author>
<author>
<name sortKey="Besenbacher, F" uniqKey="Besenbacher F">F Besenbacher</name>
</author>
<author>
<name sortKey="Kjems, J" uniqKey="Kjems J">J Kjems</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Varkouhi, Ak" uniqKey="Varkouhi A">AK Varkouhi</name>
</author>
<author>
<name sortKey="Lammers, T" uniqKey="Lammers T">T Lammers</name>
</author>
<author>
<name sortKey="Schiffelers, Rm" uniqKey="Schiffelers R">RM Schiffelers</name>
</author>
<author>
<name sortKey="Steenbergen, Mj" uniqKey="Steenbergen M">MJ Steenbergen</name>
</author>
<author>
<name sortKey="Hennink, We" uniqKey="Hennink W">WE Hennink</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G Storm</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aa, Lj" uniqKey="Aa L">LJ Aa</name>
</author>
<author>
<name sortKey="Vader, P" uniqKey="Vader P">P Vader</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G Storm</name>
</author>
<author>
<name sortKey="Schiffelers, Rm" uniqKey="Schiffelers R">RM Schiffelers</name>
</author>
<author>
<name sortKey="Engbersen, Jf" uniqKey="Engbersen J">JF Engbersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verbaan, Fj" uniqKey="Verbaan F">FJ Verbaan</name>
</author>
<author>
<name sortKey="Oussoren, C" uniqKey="Oussoren C">C Oussoren</name>
</author>
<author>
<name sortKey="Dam, Im" uniqKey="Dam I">IM Dam</name>
</author>
<author>
<name sortKey="Takakura, Y" uniqKey="Takakura Y">Y Takakura</name>
</author>
<author>
<name sortKey="Hashida, M" uniqKey="Hashida M">M Hashida</name>
</author>
<author>
<name sortKey="Crommelin, Dj" uniqKey="Crommelin D">DJ Crommelin</name>
</author>
<author>
<name sortKey="Hennink, We" uniqKey="Hennink W">WE Hennink</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G Storm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glodde, M" uniqKey="Glodde M">M Glodde</name>
</author>
<author>
<name sortKey="Sirsi, Sr" uniqKey="Sirsi S">SR Sirsi</name>
</author>
<author>
<name sortKey="Lutz, Gj" uniqKey="Lutz G">GJ Lutz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogris, M" uniqKey="Ogris M">M Ogris</name>
</author>
<author>
<name sortKey="Brunner, S" uniqKey="Brunner S">S Brunner</name>
</author>
<author>
<name sortKey="Schuller, S" uniqKey="Schuller S">S Schuller</name>
</author>
<author>
<name sortKey="Kircheis, R" uniqKey="Kircheis R">R Kircheis</name>
</author>
<author>
<name sortKey="Wagner, E" uniqKey="Wagner E">E Wagner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petersen, H" uniqKey="Petersen H">H Petersen</name>
</author>
<author>
<name sortKey="Fechner, Pm" uniqKey="Fechner P">PM Fechner</name>
</author>
<author>
<name sortKey="Martin, Al" uniqKey="Martin A">AL Martin</name>
</author>
<author>
<name sortKey="Kunath, K" uniqKey="Kunath K">K Kunath</name>
</author>
<author>
<name sortKey="Stolnik, S" uniqKey="Stolnik S">S Stolnik</name>
</author>
<author>
<name sortKey="Roberts, Cj" uniqKey="Roberts C">CJ Roberts</name>
</author>
<author>
<name sortKey="Fischer, D" uniqKey="Fischer D">D Fischer</name>
</author>
<author>
<name sortKey="Davies, Mc" uniqKey="Davies M">MC Davies</name>
</author>
<author>
<name sortKey="Kissel, T" uniqKey="Kissel T">T Kissel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, Yh" uniqKey="Choi Y">YH Choi</name>
</author>
<author>
<name sortKey="Liu, F" uniqKey="Liu F">F Liu</name>
</author>
<author>
<name sortKey="Kim, Js" uniqKey="Kim J">JS Kim</name>
</author>
<author>
<name sortKey="Choi, Yk" uniqKey="Choi Y">YK Choi</name>
</author>
<author>
<name sortKey="Park, Js" uniqKey="Park J">JS Park</name>
</author>
<author>
<name sortKey="Kim, Sw" uniqKey="Kim S">SW Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oupicky, D" uniqKey="Oupicky D">D Oupicky</name>
</author>
<author>
<name sortKey="Ogris, M" uniqKey="Ogris M">M Ogris</name>
</author>
<author>
<name sortKey="Howard, Ka" uniqKey="Howard K">KA Howard</name>
</author>
<author>
<name sortKey="Dash, Pr" uniqKey="Dash P">PR Dash</name>
</author>
<author>
<name sortKey="Ulbrich, K" uniqKey="Ulbrich K">K Ulbrich</name>
</author>
<author>
<name sortKey="Seymour, Lw" uniqKey="Seymour L">LW Seymour</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hatakeyama, H" uniqKey="Hatakeyama H">H Hatakeyama</name>
</author>
<author>
<name sortKey="Akita, H" uniqKey="Akita H">H Akita</name>
</author>
<author>
<name sortKey="Harashima, H" uniqKey="Harashima H">H Harashima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brumbach, Jh" uniqKey="Brumbach J">JH Brumbach</name>
</author>
<author>
<name sortKey="Lin, C" uniqKey="Lin C">C Lin</name>
</author>
<author>
<name sortKey="Yockman, J" uniqKey="Yockman J">J Yockman</name>
</author>
<author>
<name sortKey="Kim, Wj" uniqKey="Kim W">WJ Kim</name>
</author>
<author>
<name sortKey="Blevins, Ks" uniqKey="Blevins K">KS Blevins</name>
</author>
<author>
<name sortKey="Engbersen, Jf" uniqKey="Engbersen J">JF Engbersen</name>
</author>
<author>
<name sortKey="Feijen, J" uniqKey="Feijen J">J Feijen</name>
</author>
<author>
<name sortKey="Kim, Sw" uniqKey="Kim S">SW Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vader, P" uniqKey="Vader P">P Vader</name>
</author>
<author>
<name sortKey="Aa, Lj" uniqKey="Aa L">LJ Aa</name>
</author>
<author>
<name sortKey="Engbersen, Jf" uniqKey="Engbersen J">JF Engbersen</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G Storm</name>
</author>
<author>
<name sortKey="Schiffelers, Rm" uniqKey="Schiffelers R">RM Schiffelers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, S" uniqKey="Lin S">S Lin</name>
</author>
<author>
<name sortKey="Du, F" uniqKey="Du F">F Du</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Ji, S" uniqKey="Ji S">S Ji</name>
</author>
<author>
<name sortKey="Liang, D" uniqKey="Liang D">D Liang</name>
</author>
<author>
<name sortKey="Yu, L" uniqKey="Yu L">L Yu</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Germershaus, O" uniqKey="Germershaus O">O Germershaus</name>
</author>
<author>
<name sortKey="Neu, M" uniqKey="Neu M">M Neu</name>
</author>
<author>
<name sortKey="Behe, M" uniqKey="Behe M">M Behe</name>
</author>
<author>
<name sortKey="Kissel, T" uniqKey="Kissel T">T Kissel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merkel, Om" uniqKey="Merkel O">OM Merkel</name>
</author>
<author>
<name sortKey="Germershaus, O" uniqKey="Germershaus O">O Germershaus</name>
</author>
<author>
<name sortKey="Wada, Ck" uniqKey="Wada C">CK Wada</name>
</author>
<author>
<name sortKey="Tarcha, Pj" uniqKey="Tarcha P">PJ Tarcha</name>
</author>
<author>
<name sortKey="Merdan, T" uniqKey="Merdan T">T Merdan</name>
</author>
<author>
<name sortKey="Kissel, T" uniqKey="Kissel T">T Kissel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verbaan, Fj" uniqKey="Verbaan F">FJ Verbaan</name>
</author>
<author>
<name sortKey="Oussoren, C" uniqKey="Oussoren C">C Oussoren</name>
</author>
<author>
<name sortKey="Snel, Cj" uniqKey="Snel C">CJ Snel</name>
</author>
<author>
<name sortKey="Crommelin, Dj" uniqKey="Crommelin D">DJ Crommelin</name>
</author>
<author>
<name sortKey="Hennink, We" uniqKey="Hennink W">WE Hennink</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G Storm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mao, S" uniqKey="Mao S">S Mao</name>
</author>
<author>
<name sortKey="Neu, M" uniqKey="Neu M">M Neu</name>
</author>
<author>
<name sortKey="Germershaus, O" uniqKey="Germershaus O">O Germershaus</name>
</author>
<author>
<name sortKey="Merkel, O" uniqKey="Merkel O">O Merkel</name>
</author>
<author>
<name sortKey="Sitterberg, J" uniqKey="Sitterberg J">J Sitterberg</name>
</author>
<author>
<name sortKey="Bakowsky, U" uniqKey="Bakowsky U">U Bakowsky</name>
</author>
<author>
<name sortKey="Kissel, T" uniqKey="Kissel T">T Kissel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bartlettand, Dw" uniqKey="Bartlettand D">DW Bartlettand</name>
</author>
<author>
<name sortKey="Davis, Me" uniqKey="Davis M">ME Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pun, Sh" uniqKey="Pun S">SH Pun</name>
</author>
<author>
<name sortKey="Davis, Me" uniqKey="Davis M">ME Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buyens, K" uniqKey="Buyens K">K Buyens</name>
</author>
<author>
<name sortKey="Lucas, B" uniqKey="Lucas B">B Lucas</name>
</author>
<author>
<name sortKey="Raemdonck, K" uniqKey="Raemdonck K">K Raemdonck</name>
</author>
<author>
<name sortKey="Braeckmans, K" uniqKey="Braeckmans K">K Braeckmans</name>
</author>
<author>
<name sortKey="Vercammen, J" uniqKey="Vercammen J">J Vercammen</name>
</author>
<author>
<name sortKey="Hendrix, J" uniqKey="Hendrix J">J Hendrix</name>
</author>
<author>
<name sortKey="Engelborghs, Y" uniqKey="Engelborghs Y">Y Engelborghs</name>
</author>
<author>
<name sortKey="Smedt, Sc" uniqKey="Smedt S">SC Smedt</name>
</author>
<author>
<name sortKey="Sanders, Nn" uniqKey="Sanders N">NN Sanders</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruponen, M" uniqKey="Ruponen M">M Ruponen</name>
</author>
<author>
<name sortKey="Ronkko, S" uniqKey="Ronkko S">S Ronkko</name>
</author>
<author>
<name sortKey="Honkakoski, P" uniqKey="Honkakoski P">P Honkakoski</name>
</author>
<author>
<name sortKey="Pelkonen, J" uniqKey="Pelkonen J">J Pelkonen</name>
</author>
<author>
<name sortKey="Tammi, M" uniqKey="Tammi M">M Tammi</name>
</author>
<author>
<name sortKey="Urtti, A" uniqKey="Urtti A">A Urtti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kircheis, R" uniqKey="Kircheis R">R Kircheis</name>
</author>
<author>
<name sortKey="Wightman, L" uniqKey="Wightman L">L Wightman</name>
</author>
<author>
<name sortKey="Schreiber, A" uniqKey="Schreiber A">A Schreiber</name>
</author>
<author>
<name sortKey="Robitza, B" uniqKey="Robitza B">B Robitza</name>
</author>
<author>
<name sortKey="Rossler, V" uniqKey="Rossler V">V Rossler</name>
</author>
<author>
<name sortKey="Kursa, M" uniqKey="Kursa M">M Kursa</name>
</author>
<author>
<name sortKey="Wagner, E" uniqKey="Wagner E">E Wagner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verbaan, F" uniqKey="Verbaan F">F Verbaan</name>
</author>
<author>
<name sortKey="Dam, I" uniqKey="Dam I">I Dam</name>
</author>
<author>
<name sortKey="Takakura, Y" uniqKey="Takakura Y">Y Takakura</name>
</author>
<author>
<name sortKey="Hashida, M" uniqKey="Hashida M">M Hashida</name>
</author>
<author>
<name sortKey="Hennink, W" uniqKey="Hennink W">W Hennink</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G Storm</name>
</author>
<author>
<name sortKey="Oussoren, C" uniqKey="Oussoren C">C Oussoren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neu, M" uniqKey="Neu M">M Neu</name>
</author>
<author>
<name sortKey="Sitterberg, J" uniqKey="Sitterberg J">J Sitterberg</name>
</author>
<author>
<name sortKey="Bakowsky, U" uniqKey="Bakowsky U">U Bakowsky</name>
</author>
<author>
<name sortKey="Kissel, T" uniqKey="Kissel T">T Kissel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akagi, D" uniqKey="Akagi D">D Akagi</name>
</author>
<author>
<name sortKey="Oba, M" uniqKey="Oba M">M Oba</name>
</author>
<author>
<name sortKey="Koyama, H" uniqKey="Koyama H">H Koyama</name>
</author>
<author>
<name sortKey="Nishiyama, N" uniqKey="Nishiyama N">N Nishiyama</name>
</author>
<author>
<name sortKey="Fukushima, S" uniqKey="Fukushima S">S Fukushima</name>
</author>
<author>
<name sortKey="Miyata, T" uniqKey="Miyata T">T Miyata</name>
</author>
<author>
<name sortKey="Nagawa, H" uniqKey="Nagawa H">H Nagawa</name>
</author>
<author>
<name sortKey="Kataoka, K" uniqKey="Kataoka K">K Kataoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mishra, S" uniqKey="Mishra S">S Mishra</name>
</author>
<author>
<name sortKey="Webster, P" uniqKey="Webster P">P Webster</name>
</author>
<author>
<name sortKey="Davis, Me" uniqKey="Davis M">ME Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mok, H" uniqKey="Mok H">H Mok</name>
</author>
<author>
<name sortKey="Bae, Kh" uniqKey="Bae K">KH Bae</name>
</author>
<author>
<name sortKey="Ahn, Ch" uniqKey="Ahn C">CH Ahn</name>
</author>
<author>
<name sortKey="Park, Tg" uniqKey="Park T">TG Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schiffelers, Rm" uniqKey="Schiffelers R">RM Schiffelers</name>
</author>
<author>
<name sortKey="Ansari, A" uniqKey="Ansari A">A Ansari</name>
</author>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J Xu</name>
</author>
<author>
<name sortKey="Zhou, Q" uniqKey="Zhou Q">Q Zhou</name>
</author>
<author>
<name sortKey="Tang, Q" uniqKey="Tang Q">Q Tang</name>
</author>
<author>
<name sortKey="Storm, G" uniqKey="Storm G">G Storm</name>
</author>
<author>
<name sortKey="Molema, G" uniqKey="Molema G">G Molema</name>
</author>
<author>
<name sortKey="Lu, Py" uniqKey="Lu P">PY Lu</name>
</author>
<author>
<name sortKey="Scaria, Pv" uniqKey="Scaria P">PV Scaria</name>
</author>
<author>
<name sortKey="Woodle, Mc" uniqKey="Woodle M">MC Woodle</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Pharm Res</journal-id>
<journal-title-group>
<journal-title>Pharmaceutical Research</journal-title>
</journal-title-group>
<issn pub-type="ppub">0724-8741</issn>
<issn pub-type="epub">1573-904X</issn>
<publisher>
<publisher-name>Springer US</publisher-name>
<publisher-loc>Boston</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21833793</article-id>
<article-id pub-id-type="pmc">3264854</article-id>
<article-id pub-id-type="publisher-id">545</article-id>
<article-id pub-id-type="doi">10.1007/s11095-011-0545-z</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Paper</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Physicochemical and Biological Evaluation of siRNA Polyplexes Based on PEGylated Poly(amido amine)s</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Vader</surname>
<given-names>Pieter</given-names>
</name>
<address>
<phone>+31-6-13088433</phone>
<fax>+31-30-2517839</fax>
<email>P.Vader@uu.nl</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>van der Aa</surname>
<given-names>Leonardus J.</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Engbersen</surname>
<given-names>Johan F. J.</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Storm</surname>
<given-names>Gert</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schiffelers</surname>
<given-names>Raymond M.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
Department of Pharmaceutics Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands</aff>
<aff id="Aff2">
<label>2</label>
Department of Biomedical Chemistry MIRA Institute for Biomedical Technology & Technical Medicine Faculty of Science & Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands</aff>
<aff id="Aff3">
<label>3</label>
Universiteitsweg 99, 3584 CG Utrecht, The Netherlands</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>11</day>
<month>8</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>11</day>
<month>8</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="ppub">
<month>2</month>
<year>2012</year>
</pub-date>
<volume>29</volume>
<issue>2</issue>
<fpage>352</fpage>
<lpage>361</lpage>
<history>
<date date-type="received">
<day>30</day>
<month>5</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>21</day>
<month>7</month>
<year>2011</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2011</copyright-statement>
</permissions>
<abstract id="Abs1">
<title>ABSTRACT</title>
<sec>
<title>Purpose</title>
<p>Use of RNA interference as novel therapeutic strategy is hampered by inefficient delivery of its mediator, siRNA, to target cells. Cationic polymers have been thoroughly investigated for this purpose but often display unfavorable characteristics for systemic administration, such as interactions with serum and/or toxicity.</p>
</sec>
<sec>
<title>Methods</title>
<p>We report the synthesis of a new PEGylated polymer based on biodegradable poly(amido amine)s with disulfide linkages in the backbone. Various amounts of PEGylated polymers were mixed with their unPEGylated counterparts prior to polyplex formation to alter PEG content in the final complex.</p>
</sec>
<sec>
<title>Results</title>
<p>PEGylation effectively decreased polyplex surface charge, salt- or serum-induced aggregation and interaction with erythrocytes. Increasing amount of PEG in formulation also reduced its stability against heparin displacement, cellular uptake and subsequent silencing efficiency. Yet, for polyplexes with high PEG content, significant gene silencing efficacy was found, which was combined with almost no toxicity.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>PEGylated poly(amido amine)s are promising carriers for systemic siRNA delivery
<italic>in vivo</italic>
.</p>
</sec>
</abstract>
<kwd-group>
<title>KEY WORDS</title>
<kwd>biodegradable</kwd>
<kwd>delivery</kwd>
<kwd>PEGylation</kwd>
<kwd>poly(amido amine)s</kwd>
<kwd>siRNA</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer Science+Business Media, LLC 2012</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>INTRODUCTION</title>
<p>RNA interference (RNAi) using small interfering RNAs (siRNAs) has emerged as a powerful tool for knockdown of genes and holds great potential as a novel therapeutic strategy for a broad range of diseases (
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR2">2</xref>
). The primary limitation to clinical success, however, is the lack of efficient delivery systems that can deliver siRNA to the target cell population. siRNAs do not readily pass cellular membranes due to their negative charge and are rapidly degraded by serum nucleases.</p>
<p>Cationic polymers have widely been investigated for siRNA delivery due to their great flexibility, ease of manufacturing and modification possibilities (
<xref ref-type="bibr" rid="CR3">3</xref>
). Typical examples include poly(ethyleneimine) (pEI) (
<xref ref-type="bibr" rid="CR4">4</xref>
), poly(L-lysine) (pLL) (
<xref ref-type="bibr" rid="CR5">5</xref>
), chitosan (
<xref ref-type="bibr" rid="CR6">6</xref>
) and poly(2-(dimethyl-amino)ethylmethacrylate) (pDMAEMA) (
<xref ref-type="bibr" rid="CR7">7</xref>
). Although significant progress has been made in improving these polymers for siRNA delivery, either low efficiency and/or high cytotoxicity remain to hinder their usefulness. Recently, we have described a new class of biodegradable polymers based on poly(amido amine)s with disulfide linkages in the backbone (SS-PAA) that were specifically tailored for delivery of siRNA (
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
). These copolymers were composed of
<italic>N,N′</italic>
-cystaminebisacrylamide (CBA), 4-amino-1-butanol (ABOL) and ethylene diamine (EDA) (p(CBA-ABOL/EDA)) and were able to complex siRNA into positively charged polyplexes that were efficiently taken up by cells and induced target gene silencing. Moreover, this was combined with low cellular toxicity, which encouraged us to perform further functional studies.</p>
<p>For cancer therapy, in order to reach distant tumors or metastases, systemic administration of siRNA polyplexes is inevitable. Upon intravenous injection however, positively charged polyplexes might potentially interact aspecifically with serum proteins or erythrocytes and other blood cells, leading to formation of aggregates, which causes rapid clearance by the reticulo-endothelial systems (RES) and sometimes significant toxicity (
<xref ref-type="bibr" rid="CR10">10</xref>
). The biocompatibility of polyplexes can be enhanced by conjugation of poly(ethylene glycol) (PEG) to the cationic polymer (PEGylation). Complexation of oligonucleotides with PEG-containing copolymers leads to the formation of particles with a core-shell structure, in which the cationic polymer packs the oligonucleotide within the particle core and the hydrophilic, non-charged PEG chains form a shell layer around it (
<xref ref-type="bibr" rid="CR11">11</xref>
). In general, PEGylation of polyplexes results in a lower surface charge, reduced interaction with blood components, prolonged blood circulation and lower cytotoxicity (
<xref ref-type="bibr" rid="CR12">12</xref>
,
<xref ref-type="bibr" rid="CR13">13</xref>
).On the other hand, steric shielding of the polyplex particles also leads to reduced cellular association and uptake, diminished endosomal escape properties, and inefficient siRNA release (
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR15">15</xref>
). These contrasting effects associated with the use of PEG in oligonucleotide delivery are also referred to as the ‘PEG dilemma’ (
<xref ref-type="bibr" rid="CR16">16</xref>
), and raise the need for strategies to fine-tune the PEG content in polyplexes to optimize their physicochemical and biological properties. Recently, Brumbach et al. demonstrated the feasibility of altering and optimizing PEG content in polyplexes by formulating mixtures of a polycation and its corresponding PEGylated counterpart before complex formation, avoiding the need to synthesize multiple copolymers with varying degrees of PEGylation to identify optimal carrier candidates (
<xref ref-type="bibr" rid="CR17">17</xref>
).</p>
<p>In this study we synthesized a new PEGylated polymer, p(CBA-ABOL/EDA/PEG), based on the successful p(CBA-ABOL/EDA) polymer and used mixtures of the PEGylated and unPEGylated polymer in order to vary the PEG content in the final polyplex. Polyplexes with different PEG content were compared to corresponding unPEGylated complexes regarding physicochemical characteristics, stability, cellular uptake, gene silencing activity and
<italic>in vitro</italic>
biocompatibility.</p>
</sec>
<sec id="Sec2" sec-type="materials|methods">
<title>MATERIALS AND METHODS</title>
<sec id="Sec3">
<title>Materials</title>
<p>All chemicals, 4-amino-1-butanol (ABOL, Merck), ethylene diamine (EDA, Sigma-Aldrich),
<italic>N,N′</italic>
-cystaminebisacrylamide (CBA, Polysciences) and α-amino-ω-hydroxy poly(ethylene glycol) (PEG-NH
<sub>2</sub>
, 3000 g/mol, Iris Biotech GmbH) were purchased in the highest purity and used without further purification.</p>
</sec>
<sec id="Sec4">
<title>siRNAs</title>
<p>siRNAs were chemically synthesized and supplied by Eurogentec (Maastricht, The Netherlands). Sequence of siRNA against luciferase (siLuc) was 5′-GAU-UAU-GUC-CGG-UUA-UGU-AUU-3′ (sense) and 5′-UAC-AUA-ACC-GGA-CAU-AAU-CUU-3′ (antisense). For cellular uptake studies, Alexa-488-modified siRNA was used (dye was attached to the 5′-end of the sense strand). Universal negative control siRNA (siNS) was purchased from Eurogentec.</p>
</sec>
<sec id="Sec5">
<title>Polymer Synthesis and Characterization</title>
<p>Synthesis of p(CBA-ABOL/EDA) was performed as previously described (
<xref ref-type="bibr" rid="CR9">9</xref>
). p(CBA-ABOL/EDA/PEG) was synthesized by Michael addition polymerization of ABOL, EDA and PEG-NH
<sub>2</sub>
with
<italic>N,N′</italic>
-cystaminebisacrylamide (CBA). Therefore, 424 mg (1.63 mmol) CBA, 98 mg (1.10 mmol) ABOL and 500 mg (0.17 mmol) PEG-NH
<sub>2</sub>
were dissolved in methanol/water (4:1 v/v) and were allowed to react at 45°C in the dark in a nitrogen atmosphere. The reaction mixture became homogeneous within 1 h. After 6 days of prepolymerization, 22 mg (0.37 mmol) EDA was added and the reaction was proceeded for another 2 days. Then the polymerization was terminated by addition of a 10% molar excess EDA, to consume remaining toxic acrylamide endgroups. After termination, the reaction mixture was diluted with hydrochloric acid (1 M) and water, purified by ultrafiltration (MWCO 5000, pH 5) and recovered as its HCl salt by lyophilization.
<sup>1</sup>
H NMR (D
<sub>2</sub>
O) δ (ppm) = 1.58 (m, 2H,
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
CH
<sub>2</sub>
NR); 1.79 (m, 2H,
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
CH
<sub>2</sub>
OH); 2.69 (t, 4H, NH
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
NH); 2.77 (t, 2H,
<bold>
<italic>CH</italic>
</bold>
<sub>2</sub>
CONH); 2.83 (t, 4H,
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
SS
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
); 3.22 (t, 2H, CH
<sub>2</sub>
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
NR); 3.32 (t, 2H, COCH
<sub>2</sub>
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
NH); 3.44 (t, 4H,
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
NR
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
); 3.51 (t, 4H, NH
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
CH
<sub>2</sub>
SSCH
<sub>2</sub>
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
NH); 3.60 (t, 2H,
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
OH); 3.65–3.90 (m, 272H, O
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
<bold>
<italic>CH</italic>
</bold>
<sub>
<bold>
<italic>2</italic>
</bold>
</sub>
O). Polymers were characterized by
<sup>1</sup>
H NMR (D
<sub>2</sub>
O), recorded on a Varian Innova spectrometer (300 MHz). Molecular weights were determined by GPC relative to PEG standards, using a GPCmax with an acetate buffer pH 4.5 containing 30% (v/v) methanol as eluent.</p>
</sec>
<sec id="Sec6">
<title>Polyplex Formation</title>
<p>To prepare polyplexes at different polymer/siRNA (w/w) ratios, appropriate amounts of polymer and siRNA were each diluted in glucose-containing Hepes buffer (HBG: 20 mM Hepes, pH 7.4, 5 wt.% glucose). Next, polymer solution was added to siRNA solution (4:1, v/v), followed by 5 s vortexing and 30 min incubation at room temperature. To obtain polyplexes with different PEG content, expressed as the weight percentage of PEG to total polymer, polymer solutions of p(CBA-ABOL/EDA) and p(CBA-ABOL/EDA/PEG) were mixed prior to polyplex formation.</p>
</sec>
<sec id="Sec7">
<title>Polyplex Characterization</title>
<p>For gel retardation assays, polyplexes were prepared in 50 μl HBG at a final siRNA concentration of 2.5 μM and incubated for 1 h at 37°C in the presence or absence of 5 mM glutathione. After addition of loading dye (Fermentas, St. Leon-Rot, Germany), samples were run on a 4% agarose gel containing 0.5 μg/ml ethidium bromide at 90 V for 10 min. Hydrodynamic diameters and ζ-potentials were measured as previously described (
<xref ref-type="bibr" rid="CR8">8</xref>
).</p>
</sec>
<sec id="Sec8">
<title>Complex Aggregation in Salt</title>
<p>Polyplexes were prepared in 400 μl HBG at a final siRNA concentration of 500 nM. Then, 2 ml PBS was added and hydrodynamic diameters were measured at indicated time points as described above.</p>
</sec>
<sec id="Sec9">
<title>Complex Aggregation in Serum</title>
<p>Polyplexes containing were prepared in 50 μl HBG at a final siRNA concentration of 15 μM. 180 μl fetal bovine serum (FBS) was added to 20 μl polyplex solution and samples were incubated for 10 min at 37°C. Aggregation in terms of turbidity increase of each sample was quantified by absorbance detection at 595 nm.</p>
</sec>
<sec id="Sec10">
<title>Stability of Polyplexes Against Heparin</title>
<p>Polyplexes were prepared in 50 μl HBG at a final siRNA concentration of 2.5 μM and incubated for 30 min with heparin solutions of different concentrations, expressed as heparin/siRNA (w/w) ratio. After addition of loading dye, samples were run on a 4% agarose gel containing 0.5 μg/ml ethidium bromide at 90 V for 10 min.</p>
</sec>
<sec id="Sec11">
<title>Erythrocyte Aggregation and Hemolysis</title>
<p>Erythrocytes were obtained from 200 μl whole murine blood by multiple centrifugation rounds (1000 
<italic>g</italic>
, 10 min, 4°C) followed by washing the pellet in PBS until the supernatant was clear. The final pellet was resuspended in 4 ml PBS. Subsequently, 160 μl erythrocyte suspension was added to 40 μl polyplex solution having a siRNA concentration of 4 μM and samples were incubated for 1 h at 37°C. Triton X-100 (1%) in PBS (100% lysis) and HBG (0% lysis) were used as controls. After a final centrifugation step, 150 μl of the supernatant was analyzed for hemoglobin release by absorbance detection at 550 nm. The pellet was resuspended in 50 μl PBS for microscopic evaluation using a Nikon TE2000-U microscope.</p>
</sec>
<sec id="Sec12">
<title>Cell Culture</title>
<p>H1299 (human lung cancer) cells stably expressing firefly luciferase were cultivated at 37°C and 5% CO
<sub>2</sub>
in RPMI 1640 (PAA laboratories GmbH, Pasching, Austria) supplemented with 10% (v/v) FBS, 100 IU/ml penicillin, 100 μg/ml streptomycin and 0.25 μg/ml amphotericin B.</p>
</sec>
<sec id="Sec13">
<title>Cellular Uptake</title>
<p>Quantification of siRNA uptake was performed as previously described, with minor modifications (
<xref ref-type="bibr" rid="CR18">18</xref>
). H1299 cells were seeded in 6-well plates at a density of 1.6 × 10
<sup>5</sup>
cells per well, 24 h before transfection. Cells were treated with 400 μl of different polyplexes containing Alexa-488 labeled siRNA at a final siRNA concentration of 125 nM in FBS-containing medium. After 4 h, cells were washed twice with PBS to remove non-internalized polyplexes. 300 μl lysis buffer (2% SDS, 1% Triton X-100 in PBS) was added to lyse the cells and dissociate polyplexes. Cells were lysed for 1 h on ice, after which the lysates were centrifuged (14000 
<italic>g</italic>
, 15 min, 4°C) to remove cell debris. 200 μl supernatant was transferred to a black 96-well plate to measure fluorescence using a Fluostar OPTIMA microplate-based multi-detection reader (Isogen Life Science, Maarssen, The Netherlands). The mean fluorescence intensity was normalized to the amount of protein present in the sample, determined using the MicroBCA™ protein assay (Pierce, Rockford, USA).</p>
<p>For microscopy, cells were seeded in 12-well plates on coverslips, 24 h before transfection. Cells were treated with 20 μl of different polyplexes containing Alexa-488 labeled siRNA at a final siRNA concentration of 125 nM. After 4 h, cells were washed with PBS and fixed with 4% paraformaldehyde in PBS at room temperature for 30 min. After fixation, slides were washed, counterstained with DAPI and mounted using Fluorsave (Calbiochem, San Diego, CA, USA). Cells were imaged using a Nikon TE2000-U fluorescent microscope (Nikon Benelux, Brussels, Belgium).</p>
</sec>
<sec id="Sec14">
<title>
<italic>In Vitro</italic>
Gene Silencing</title>
<p>H1299 cells were seeded in 96-well plates at a density of 8000 cells per well, 24 h before transfection. Cells were treated with 20 μl of different polyplexes at a final siRNA concentration of 125 nM in FBS-containing medium. After 4 h, medium was replaced, and cells were incubated for another 48 h. Then, cells were washed and lysed in 100 μl reporter gene lysis buffer (Promega, Leiden, The Netherlands). After a freeze/thaw cycle, 50 μl lysate was mixed with 50 μl luciferase assay reagent (Promega) and luciferase activity was determined by measuring the luminescence for 10 s at room temperature using a Fluostar OPTIMA microplate-based multi-detection reader equipped with a microinjector (Isogen Life Science). Luciferase activity of untreated cells was defined as 100% expression.</p>
</sec>
<sec id="Sec15">
<title>Statistical Analysis</title>
<p>Results were analyzed using Student’s
<italic>t</italic>
-tests to assess statistical significances. For multiple comparisons, ANOVA with a Bonferroni post-test was used.</p>
</sec>
</sec>
<sec id="Sec16">
<title>RESULTS AND DISCUSSION</title>
<sec id="Sec17">
<title>Polymer Synthesis</title>
<p>Two reducible poly(amido amine) copolymers were synthesized by Michael-type addition polymerization from
<italic>N,N′</italic>
-cystaminebisacrylamide (CBA), 4-amino-1-butanol (ABOL) and ethylene diamine (EDA) with or without α-amino-ω-hydroxy poly(ethylene glycol) (PEG-NH
<sub>2</sub>
), to obtain a PEGylated and a non-PEGylated polymer (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). All polymers were obtained as a white to slightly yellow brittle material. The molar ratio between ABOL and EDA was found to be optimal at 75/25 for the unPEGylated polymer (
<xref ref-type="bibr" rid="CR9">9</xref>
) and this ratio was used again here. The characteristics of the final polymers are listed in Table 
<xref rid="Tab1" ref-type="table">1</xref>
. The obtained ratio between ABOL, EDA and PEG, as well as the PEG content were determined from the NMR spectra. Molecular weights were determined by GPC. The obtained ratio between ABOL/EDA in the polymers deviated only slightly from the feed ratio and the obtained PEG fraction in the PEGylated polymer corresponded well with the aimed fraction. Based on the previous results in the p(CBA-ABOL/EDA) synthesis (
<xref ref-type="bibr" rid="CR9">9</xref>
), all polymers are expected to be linear.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Schematic representation of the synthesis of the p(CBA-ABOL/EDA) and p(CBA-ABOL/EDA/PEG) copolymers.</p>
</caption>
<graphic xlink:href="11095_2011_545_Fig1_HTML" id="MO1"></graphic>
</fig>
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Synthesis Characteristics</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Polymer</th>
<th>Feed composition
<sup>a</sup>
ABOL/EDA/PEG</th>
<th>Obtained composition
<sup>b</sup>
ABOL/EDA/PEG</th>
<th>Wt % PEG
<sup>c</sup>
</th>
<th>M
<sub>w</sub>
(kg/mol)</th>
<th>PDI</th>
<th>M
<sub>w</sub>
PAA (kg/mol)
<sup>d</sup>
</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(CBA-ABOL/EDA)</td>
<td>75 / 25 / 0</td>
<td>80 / 20 / 0</td>
<td>0%</td>
<td char="." align="char">11.6</td>
<td char="." align="char">2.4</td>
<td char="." align="char">11.6</td>
</tr>
<tr>
<td>p(CBA-ABOL/EDA/PEG)</td>
<td>67 / 23 / 10</td>
<td>59 / 31 / 10</td>
<td>52%</td>
<td char="." align="char">47.8</td>
<td char="." align="char">1.4</td>
<td char="." align="char">23.9</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a</sup>
Stoichiometrical feed ratio of monomers</p>
<p>
<sup>b</sup>
Determined by
<sup>1</sup>
H NMR</p>
<p>
<sup>c</sup>
PEG fraction of the polymer expressed as a weight percentage</p>
<p>
<sup>d</sup>
Molecular weight of the PAA fraction in the polymer, calculated from the wt.% PEG</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec18">
<title>Polyplex Characteristics</title>
<p>In order to prepare polyplexes with various amounts of PEG in the formulations, mixtures containing different ratios of p(CBA-ABOL/EDA) and p(CBA-ABOL/EDA/PEG) were taken and mixed with siRNA. As it has previously been shown that PEG conjugation to polymeric vectors can interfere with polyplex formation and siRNA complexation, we first investigated the physicochemical properties of polyplexes with different PEG contents.</p>
<p>To determine the ability of the polymer mixtures to complexate siRNA, an agarose gel retardation assay was performed. Polyplexes were formed at polymer/siRNA (w/w) ratios of 0 (free siRNA), 3, 6, 12, 24 and 48. In the determination of the w/w ratios, the weight of PEG was not taken into account, thus the given ratios reflect the relative amount of cationic polymer in each formulation. For unPEGylated polyplexes, total siRNA retardation was observed at w/w ratios 12 and higher, indicating that the nucleic acid remained associated with the cationic polymers that do not migrate into the gel (Fig. 
<xref rid="Fig2" ref-type="fig">2a</xref>
, left). Complete retardation at this w/w ratio was also observed for polyplexes with 15, 30 and 45 wt.% PEG (Fig. 
<xref rid="Fig2" ref-type="fig">2b–d</xref>
, left). For polyplexes that were prepared with 45 wt.% PEG at the lower w/w ratios 3 and 6, siRNA was still visible in the wells, indicating that it was bound to the polymer but not completely shielded as ethidium bromide was still able to intercalate (Fig. 
<xref rid="Fig2" ref-type="fig">2d</xref>
, left).
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Agarose gel retardation of polyplexes prepared at w/w ratios 0 (siRNA only) to 48, after 1 h incubation at 37°C in the absence or presence of 5 mM glutathione. Polyplexes were prepared using polymers without PEG (
<bold>a</bold>
) or with a PEG content of 15 wt.% (
<bold>b</bold>
), 30 wt.% (
<bold>c</bold>
) and 45 wt.% (
<bold>d</bold>
).</p>
</caption>
<graphic xlink:href="11095_2011_545_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<p>The disulfide bridges in the poly(CBA-ABOL/EDA) polymers are expected to be cleaved in the cytosol because of its high redox potential as compared to the extracellular environment. To investigate whether the accessibility of these disulfide bonds for reducing agents like glutathione is restricted by PEGylation of the polyplexes, polyplexes were incubated for 1 h at 37°C in the presence of 5 mM glutathione and subjected to electrophoresis. For all formulations, this incubation resulted in total release of siRNA from the polyplexes, indicating that the PEG chains do not interfere with polymer reduction (Fig. 
<xref rid="Fig2" ref-type="fig">2a–d</xref>
, right). Based on these results, further studies were performed with polyplexes prepared at polymer/siRNA w/w ratio 24.</p>
<p>The influence of PEGylation on polyplex size and surface charge was investigated using dynamic light scattering and laser Doppler electrophoresis, respectively. UnPEGylated polyplexes prepared at w/w ratio 24 were around 160 nm in diameter and positively charged (± 20 mV) (Fig. 
<xref rid="Fig3" ref-type="fig">3a, b</xref>
). Polyplexes with 15 wt.% or 30 wt.% PEG were around the same size, while polyplexes formed with 45 wt.% PEG were slightly smaller (Fig. 
<xref rid="Fig3" ref-type="fig">3a</xref>
). Smaller sizes for PEGylated polyplexes as compared to their unPEGylated counterparts has been shown before and was contributed to effective shielding and subsequent abolished aggregation (
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR20">20</xref>
). Increased size for PEGylated polyplexes has also been reported, but always linked to perturbed nucleic acid condensation (
<xref ref-type="bibr" rid="CR17">17</xref>
,
<xref ref-type="bibr" rid="CR21">21</xref>
). However, together with the data obtained from the agarose gel retardation assay, these results show that PEG conjugation of these polymers does not negatively affect polyplex formation. Furthermore, PEGylation substantially decreased polyplex surface charge down to ±5 mV for polyplexes with 45 wt.% PEG, which is in accordance with other reports on effects of polyplex PEGylation (
<xref ref-type="bibr" rid="CR17">17</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR23">23</xref>
) (Fig. 
<xref rid="Fig3" ref-type="fig">3b</xref>
).
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Size (
<bold>a</bold>
) and ζ-potential (
<bold>b</bold>
) of polyplexes prepared at polymer/siRNA (w/w) ratio 24 using polymers with increasing PEG content, as determined by dynamic light scattering and laser Doppler electrophoresis. Results are shown as mean ± SD for three individual measurements.</p>
</caption>
<graphic xlink:href="11095_2011_545_Fig3_HTML" id="MO3"></graphic>
</fig>
</p>
</sec>
<sec id="Sec19">
<title>Polyplex Stability</title>
<p>Systemic administration exposes polyplexes to physiological ionic strengths and anionically charged proteins, which can induce aggregation and destabilization by non-specific interactions (
<xref ref-type="bibr" rid="CR13">13</xref>
). To investigate whether PEGylation prevents polyplex aggregation at physiological salt concentrations, pre-formed polyplexes were incubated in PBS and size measurements were performed over time using dynamic light scattering. As expected, polyplexes without PEG showed a gradual increase in size to approximately 800 nm after 4 h due to aggregation (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). Increasing the PEG content resulted in enhanced stabilization of the polyplexes. Polyplexes containing 15 wt.% PEG displayed an aggregation profile similar to that of polyplexes without PEG, whereas a content of 30 wt.% PEG substantially inhibited aggregation. 45 wt.% PEG totally prevented aggregation up to 4 h. Similar PEG-density dependent stabilization profiles were found for post-PEGylated cyclodextrin-based polyplexes formed with siRNA (
<xref ref-type="bibr" rid="CR24">24</xref>
) or pDNA (
<xref ref-type="bibr" rid="CR25">25</xref>
). Next, we assessed effects of PEGylation on serum-induced aggregation by incubating pre-formed polyplexes in 90% FCS. Aggregation in terms of turbidity increase was significantly prevented by coupling of PEG to the polymeric structures and appeared to be more pronounced with increasing PEG content (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
). Combined, these results indicate that PEGylation prevents polyplex aggregation in biological media. Serum proteins as well as extracellular matrix components can however, besides inducing aggregation, also lead to vector disassembly (
<xref ref-type="bibr" rid="CR26">26</xref>
). To evaluate possible effects of PEG on polyplex stability against competing anions, we tested the susceptibility of our polyplexes to heparin displacement. Heparin is one of the glycosaminoglycans (GAG), which are negatively charged polysaccharides that are the major components of the extracellular matrix in many tissues and are also found on the cell surface (
<xref ref-type="bibr" rid="CR27">27</xref>
). Polyplexes with different PEG contents were prepared and subsequently incubated with increasing heparin concentrations. Polyplex dissociation in terms of siRNA release was shown by electrophoresis of the samples on an ethidium bromide-containing agarose gel (Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
). For unPEGylated polyplexes, dissociation occurred at heparin/siRNA (w/w) ratio 4 and higher. The presence of 15 wt.% PEG did not alter the stability against heparin, but for polyplexes with higher PEG content a slightly decreased resistance against heparin competition was observed. Such a negative effect of PEG on polyplex stability was reported earlier for pEI-PEG/siRNA polyplexes and contributed to the weakened interaction with siRNA in the case of the PEGylated polymer as a result of decreased charge density (
<xref ref-type="bibr" rid="CR23">23</xref>
).
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Polyplex stability in a physiological salt solution. Polyplexes were prepared at polymer/siRNA (w/w) ratio 24 using polymers with increasing PEG content. Particle sizes were determined by dynamic light scattering. Results are shown as mean ± SD for two individual measurements.</p>
</caption>
<graphic xlink:href="11095_2011_545_Fig4_HTML" id="MO4"></graphic>
</fig>
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<p>Serum-induced aggregation of polyplexes. Polyplexes were prepared at polymer/siRNA (w/w) ratio 24 using polymers with increasing PEG content. Aggregation in 90% FCS in terms of turbidity increase was quantified by absorbance detection at 595 nm. Results are shown as mean ± SD for
<italic>n</italic>
 = 3. Statistically significant differences
<italic>versus</italic>
polyplexes without PEG are denoted by *** (
<italic>p</italic>
 < 0.001).</p>
</caption>
<graphic xlink:href="11095_2011_545_Fig5_HTML" id="MO5"></graphic>
</fig>
<fig id="Fig6">
<label>Fig. 6</label>
<caption>
<p>Heparin displacement assay. Polyplexes were prepared at w/w ratio 24 and incubated for 30 min at 37°C in the presence of increasing amounts of heparin, expressed as heparin/siRNA (w/w) ratio. Polyplexes were prepared using polymers without PEG (
<bold>a</bold>
) or with a PEG content of 15 wt.% (
<bold>b</bold>
), 30 wt.% (
<bold>c</bold>
) and 45 wt.% (
<bold>d</bold>
).</p>
</caption>
<graphic xlink:href="11095_2011_545_Fig6_HTML" id="MO6"></graphic>
</fig>
</p>
</sec>
<sec id="Sec20">
<title>Erythrocyte Aggregation and Hemolysis</title>
<p>Besides interactions with salt, proteins and/or the extracellular matrix, interactions with blood cells such as erythrocytes occur after systemic injection. Erythrocytes bear a negative surface charge and are known to interact with positively charged polyplexes, leading to aggregate formation and systemic toxicity (
<xref ref-type="bibr" rid="CR28">28</xref>
). To evaluate the influence of PEG on polyplex-induced erythrocyte aggregation and hemolysis, polyplexes with different PEG content were incubated for 1 h with freshly purified red blood cells. Erythrocytes were pelleted and visualized under a microscope, while the supernatant was used for measuring the degree of hemolysis as determined by absorbance detection at 550 nm. Control polyplexes were prepared using poly(2-(dimethylamino)ethyl methacrylate) (pDMAEMA), which were previously shown to induce severe erythrocyte aggregation (
<xref ref-type="bibr" rid="CR29">29</xref>
). In our experiments, erythrocytes incubated with pDMAEMA polyplexes also displayed obvious aggregation as compared to cells incubated with buffer only. Polyplexes prepared from p(CBA-ABOL/EDA) polymers induced only mild aggregation, which was even further decreased using PEGylated polymers. For polyplexes containing 30 or 45 wt.% PEG, no erythrocyte aggregation was observed (Fig. 
<xref rid="Fig7" ref-type="fig">7a</xref>
). A similar trend was observed for the degree of hemolysis. For polyplexes formed with pDMAEMA, approximately 16% hemolysis was observed, similar to what others have found for pEI polyplexes (
<xref ref-type="bibr" rid="CR30">30</xref>
). A much lower hemolytic activity was measured for pCBA-ABOL/EDA polyplexes (approx. 4%). For PEGylated polyplexes, even less hemolysis was observed, down to less than 1% hemolysis for polyplexes with 45 wt.% PEG (Fig. 
<xref rid="Fig7" ref-type="fig">7b</xref>
). Together, these data indicate that PEGylated polymers have reduced interactions with blood components, which is in accordance with findings from others (
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR31">31</xref>
).
<fig id="Fig7">
<label>Fig. 7</label>
<caption>
<p>Polyplex-induced erythrocyte aggregation and hemolysis. Polyplexes were prepared using polymers with increasing PEG content and incubated with erythrocytes for 1 h at 37°C. pDMAEMA polyplexes were used as controls. (
<bold>a</bold>
) Microscopic image of erythrocyte aggregation. Aggregates are indicated with arrows. (
<xref ref-type="bibr" rid="CR1">1</xref>
) HBG (
<xref ref-type="bibr" rid="CR2">2</xref>
) pDMAEMA (
<xref ref-type="bibr" rid="CR3">3</xref>
<xref ref-type="bibr" rid="CR6">6</xref>
) p(CBA-ABOL/EDA) with increasing PEG content. (
<bold>b</bold>
) Degree of hemolysis as determined by absorbance detection at 550 nm. Results are shown as mean ± SD for
<italic>n</italic>
 = 3. Statistically significant differences
<italic>versus</italic>
polyplexes without PEG are denoted by ** (
<italic>p</italic>
 < 0.01) or *** (
<italic>p</italic>
 < 0.001).</p>
</caption>
<graphic xlink:href="11095_2011_545_Fig7_HTML" id="MO7"></graphic>
</fig>
</p>
</sec>
<sec id="Sec21">
<title>Cellular Uptake and Gene Silencing</title>
<p>To study the effects of PEGylation on intracellular uptake of polyplexes, H1299 cells were transfected with polyplexes with increasing PEG content, formulated using Alexa488-labeled siRNA. For quantification of siRNA internalization, fluorescence was determined in cell lysates 4 h after transfection. 2% SDS was added to the lysis buffer to ensure complete polyplex dissociation, preventing possible quenching effects (
<xref ref-type="bibr" rid="CR18">18</xref>
). As shown in Fig. 
<xref rid="Fig8" ref-type="fig">8a</xref>
, for all polymers, uptake was less than for control lipoplexes based on Lipofectamine 2000. Cellular uptake decreased with increasing PEG content in the polyplex. While the extent of uptake for polyplexes with 15 wt.% PEG was similar to that of unPEGylated polyplex, uptake was significantly reduced for polyplexes containing 30 wt.% PEG and almost completely inhibited for polyplexes containing 45 wt.% PEG. Lower cellular uptake of polyplexes having increased PEG content was also confirmed by fluorescent microscopy (Fig. 
<xref rid="Fig8" ref-type="fig">8b</xref>
). As suggested by others, cellular uptake for PEGylated polyplexes is reduced because of PEG stealth effects, causing strongly reduced interaction with the cellular membrane (
<xref ref-type="bibr" rid="CR32">32</xref>
,
<xref ref-type="bibr" rid="CR33">33</xref>
).
<fig id="Fig8">
<label>Fig. 8</label>
<caption>
<p>Cellular uptake of PEGylated polyplexes. (
<bold>a</bold>
) Mean fluorescence intensity (MFI) of H1299 cells determined 4 h after transfection, corrected for protein content. Polyplexes were prepared using polymers with increasing PEG content and fluorescently labeled siRNA. Lipofectamine 2000 was used as control. Results are shown as mean ± SD for
<italic>n</italic>
 = 2–3. Statistically significant differences
<italic>versus</italic>
polyplexes without PEG are denoted by * (
<italic>p</italic>
 < 0.05) or *** (
<italic>p</italic>
 < 0.001). (
<bold>b</bold>
) Fluorescent microscopy pictures of H1299 treated cells. Nuclei are stained blue (DAPI), siRNA appears as green (Alexa-488).</p>
</caption>
<graphic xlink:href="11095_2011_545_Fig8_HTML" id="MO8"></graphic>
</fig>
</p>
<p>Gene silencing potential of the PEGylated polyplexes was evaluated using H1299 cells that stably express the luciferase enzyme. As PEGylation reduced cellular uptake and hence is likely to reduce silencing efficiency, cells were transfected using a rather high siRNA concentration of 125 nM. At this concentration, transfection with Lipofectamine 2000 lipoplexes resulted in almost complete luciferase silencing. UnPEGylated polyplexes could efficiently inhibit luciferase expression, however this was combined with a relatively high cytotoxicity (approximately 50%), as indicated by the reduced luciferase expression of cells treated with control siRNA (Fig. 
<xref rid="Fig9" ref-type="fig">9</xref>
). The apparent toxicity of these polyplexes was not observed before (
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
), and is likely caused by the increased polymer and siRNA dose which may lead in the presence of serum to particle aggregation and precipitation. As expected, with increasing PEG content, silencing efficiency was reduced, as well as cytotoxicity. In contrast, others have shown that PEGylation of pEI polyplexes leads to enhanced silencing activity, due to decreased polyplex stability and more efficient siRNA release (
<xref ref-type="bibr" rid="CR23">23</xref>
). For our systems, siRNA release from the complex is most likely not a limiting factor for their biological activity, as a result of the triggered release mechanism due to the cleavage of the disulfide linkages in the polymer backbone. Interestingly, for polyplexes with high PEG content (30 or 45 wt.%) cell viability was unaffected, while significant luciferase knockdown was still observed. Although the knockdown efficacy of PEGylated polyplexes
<italic>in vitro</italic>
is low as compared to Lipofectamine 2000 or unPEGylated polymers, improved
<italic>in vivo</italic>
delivery due to decreased aggregation and increased circulation time can be expected. Addition of targeting ligands to the distal ends of the PEG chains can be expected to boost their cellular uptake, resulting in increased silencing efficiency, and this is considered as the next step in the development of targeted delivery systems for siRNA (
<xref ref-type="bibr" rid="CR34">34</xref>
).
<fig id="Fig9">
<label>Fig. 9</label>
<caption>
<p>Gene silencing activity of PEGylated polyplexes. Luciferase expression of H1299 cells was determined 48 h after transfection. Polyplexes were prepared using polymers with increasing PEG content and luciferase siRNA (
<italic>black bars</italic>
) or non-silencing control siRNA (
<italic>white bars</italic>
). Lipofectamine 2000 was used as control. Results are shown as mean ± SD for
<italic>n</italic>
 = 3. Statistically significant differences of luciferase siRNA
<italic>versus</italic>
non-silencing control siRNA are denoted by ** (
<italic>p</italic>
 < 0.01) or *** (
<italic>p</italic>
 < 0.001).</p>
</caption>
<graphic xlink:href="11095_2011_545_Fig9_HTML" id="MO9"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="Sec22">
<title>CONCLUSIONS</title>
<p>In this study, the synthesis of a novel PEGylated polymer based on biodegradable poly(amido amine)s with disulfide linkages in the backbone was described for the delivery of siRNA. Polyplexes with various PEG contents were prepared by mixing the PEGylated polymer with its unPEGylated counterpart prior to polyplex formation. PEGylation decreased polyplex surface charge, increased their stability against salt and serum and decreased polyplex interactions with erythrocytes. Controversially, PEGylated polyplexes showed decreased resistance against heparin displacement. Cellular uptake was lower for polyplexes with increasing PEG content, which resulted in reduced gene silencing efficiency, but also reduced toxicity. Polyplexes with PEG contents of 30 and 45 wt.% showed significant silencing efficiency in the absence of toxicity, which makes them promising carriers for delivery of siRNA
<italic>in vivo</italic>
. The addition of targeting ligands on the PEG chain ends is expected to further improve their cellular uptake and silencing potential.</p>
</sec>
</body>
<back>
<ack>
<title>ACKNOWLEDGMENTS & DISCLOSURES</title>
<p>The authors gratefully acknowledge M.J. van Steenbergen for his assistance with GPC measurements. This project is financially supported by the Technology Foundation STW of The Netherlands Organization for Scientific Research NWO grant UFA7468.</p>
<p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.</p>
</ack>
<ref-list id="Bib1">
<title>REFERENCES</title>
<ref id="CR1">
<label>1.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fougerolles</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vornlocher</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Maraganore</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lieberman</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Interfering with disease: a progress report on siRNA-based therapeutics</article-title>
<source>Nat Rev Drug Discov</source>
<year>2007</year>
<volume>6</volume>
<fpage>443</fpage>
<lpage>453</lpage>
<pub-id pub-id-type="doi">10.1038/nrd2310</pub-id>
<pub-id pub-id-type="pmid">17541417</pub-id>
</mixed-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schiffelers</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Woodle</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Scaria</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Pharmaceutical prospects for RNA interference</article-title>
<source>Pharm Res</source>
<year>2004</year>
<volume>21</volume>
<fpage>1</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1023/B:PHAM.0000012145.49054.6c</pub-id>
<pub-id pub-id-type="pmid">14984251</pub-id>
</mixed-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Howard</surname>
<given-names>KA</given-names>
</name>
</person-group>
<article-title>Delivery of RNA interference therapeutics using polycation-based nanoparticles</article-title>
<source>Adv Drug Deliv Rev</source>
<year>2009</year>
<volume>61</volume>
<fpage>710</fpage>
<lpage>720</lpage>
<pub-id pub-id-type="doi">10.1016/j.addr.2009.04.001</pub-id>
<pub-id pub-id-type="pmid">19356738</pub-id>
</mixed-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Urban-Klein</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Werth</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Abuharbeid</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Czubayko</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Aigner</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA
<italic>in vivo</italic>
</article-title>
<source>Gene Ther</source>
<year>2005</year>
<volume>12</volume>
<fpage>461</fpage>
<lpage>466</lpage>
<pub-id pub-id-type="doi">10.1038/sj.gt.3302425</pub-id>
<pub-id pub-id-type="pmid">15616603</pub-id>
</mixed-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sato</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Hirai</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yamayoshi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Moriyama</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yamano</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Takagi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kano</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Shimamoto</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Maruyama</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Polymer brush-stabilized polyplex for a siRNA carrier with long circulatory half-life</article-title>
<source>J Control Release</source>
<year>2007</year>
<volume>122</volume>
<fpage>209</fpage>
<lpage>216</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2007.04.018</pub-id>
<pub-id pub-id-type="pmid">17583369</pub-id>
</mixed-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Howard</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Rahbek</surname>
<given-names>UL</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Damgaard</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Glud</surname>
<given-names>SZ</given-names>
</name>
<name>
<surname>Andersen</surname>
<given-names>MO</given-names>
</name>
<name>
<surname>Hovgaard</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Schmitz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nyengaard</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Besenbacher</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kjems</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>RNA interference
<italic>in vitro</italic>
and
<italic>in vivo</italic>
using a novel chitosan/siRNA nanoparticle system</article-title>
<source>Mol Ther</source>
<year>2006</year>
<volume>14</volume>
<fpage>476</fpage>
<lpage>484</lpage>
<pub-id pub-id-type="doi">10.1016/j.ymthe.2006.04.010</pub-id>
<pub-id pub-id-type="pmid">16829204</pub-id>
</mixed-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Varkouhi</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Lammers</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schiffelers</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Steenbergen</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Hennink</surname>
<given-names>WE</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Gene silencing activity of siRNA polyplexes based on biodegradable polymers</article-title>
<source>Eur J Pharm Biopharm</source>
<year>2011</year>
<volume>77</volume>
<fpage>450</fpage>
<lpage>457</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejpb.2010.11.016</pub-id>
<pub-id pub-id-type="pmid">21118719</pub-id>
</mixed-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<mixed-citation publication-type="other">Vader P, van der Aa LJ, Engbersen JF, Storm G, Schiffelers RM. Disulfide-Based Poly(amido amine)s for siRNA Delivery: Effects of Structure on siRNA Complexation, Cellular Uptake, Gene Silencing and Toxicity. Pharm Res. 2010.</mixed-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aa</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Vader</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schiffelers</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Engbersen</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>Optimization of poly(amido amine)s as vectors for siRNA delivery</article-title>
<source>J Control Release</source>
<year>2011</year>
<volume>150</volume>
<fpage>177</fpage>
<lpage>186</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2010.11.030</pub-id>
<pub-id pub-id-type="pmid">21130817</pub-id>
</mixed-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verbaan</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Oussoren</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dam</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Takakura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hashida</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Crommelin</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Hennink</surname>
<given-names>WE</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>The fate of poly(2-dimethyl amino ethyl)methacrylate-based polyplexes after intravenous administration</article-title>
<source>Int J Pharm</source>
<year>2001</year>
<volume>214</volume>
<fpage>99</fpage>
<lpage>101</lpage>
<pub-id pub-id-type="doi">10.1016/S0378-5173(00)00642-6</pub-id>
<pub-id pub-id-type="pmid">11282245</pub-id>
</mixed-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glodde</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sirsi</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Lutz</surname>
<given-names>GJ</given-names>
</name>
</person-group>
<article-title>Physiochemical properties of low and high molecular weight poly(ethylene glycol)-grafted poly(ethylene imine) copolymers and their complexes with oligonucleotides</article-title>
<source>Biomacromolecules</source>
<year>2006</year>
<volume>7</volume>
<fpage>347</fpage>
<lpage>356</lpage>
<pub-id pub-id-type="doi">10.1021/bm050726t</pub-id>
<pub-id pub-id-type="pmid">16398535</pub-id>
</mixed-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ogris</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brunner</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schuller</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kircheis</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery</article-title>
<source>Gene Ther</source>
<year>1999</year>
<volume>6</volume>
<fpage>595</fpage>
<lpage>605</lpage>
<pub-id pub-id-type="doi">10.1038/sj.gt.3300900</pub-id>
<pub-id pub-id-type="pmid">10476219</pub-id>
</mixed-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petersen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fechner</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Kunath</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Stolnik</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Kissel</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system</article-title>
<source>Bioconjug Chem</source>
<year>2002</year>
<volume>13</volume>
<fpage>845</fpage>
<lpage>854</lpage>
<pub-id pub-id-type="doi">10.1021/bc025529v</pub-id>
<pub-id pub-id-type="pmid">12121141</pub-id>
</mixed-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>YK</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SW</given-names>
</name>
</person-group>
<article-title>Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier</article-title>
<source>J Control Release</source>
<year>1998</year>
<volume>54</volume>
<fpage>39</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1016/S0168-3659(97)00174-0</pub-id>
<pub-id pub-id-type="pmid">9741902</pub-id>
</mixed-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oupicky</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ogris</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Howard</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Dash</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Ulbrich</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Seymour</surname>
<given-names>LW</given-names>
</name>
</person-group>
<article-title>Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation</article-title>
<source>Mol Ther</source>
<year>2002</year>
<volume>5</volume>
<fpage>463</fpage>
<lpage>472</lpage>
<pub-id pub-id-type="doi">10.1006/mthe.2002.0568</pub-id>
<pub-id pub-id-type="pmid">11945074</pub-id>
</mixed-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hatakeyama</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Akita</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Harashima</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma</article-title>
<source>Adv Drug Deliv Rev</source>
<year>2011</year>
<volume>63</volume>
<fpage>152</fpage>
<lpage>160</lpage>
<pub-id pub-id-type="doi">10.1016/j.addr.2010.09.001</pub-id>
<pub-id pub-id-type="pmid">20840859</pub-id>
</mixed-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brumbach</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Yockman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Blevins</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Engbersen</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Feijen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SW</given-names>
</name>
</person-group>
<article-title>Mixtures of poly(triethylenetetramine/cystamine bisacrylamide) and poly(triethylenetetramine/cystamine bisacrylamide)-g-poly(ethylene glycol) for improved gene delivery</article-title>
<source>Bioconjug Chem</source>
<year>2010</year>
<volume>21</volume>
<fpage>1753</fpage>
<lpage>1761</lpage>
<pub-id pub-id-type="doi">10.1021/bc900522x</pub-id>
<pub-id pub-id-type="pmid">20882996</pub-id>
</mixed-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vader</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Aa</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Engbersen</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schiffelers</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>A method for quantifying cellular uptake of fluorescently labeled siRNA</article-title>
<source>J Control Release</source>
<year>2010</year>
<volume>148</volume>
<fpage>106</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2010.06.019</pub-id>
<pub-id pub-id-type="pmid">20600397</pub-id>
</mixed-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems</article-title>
<source>Biomacromolecules</source>
<year>2008</year>
<volume>9</volume>
<fpage>109</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="doi">10.1021/bm7008747</pub-id>
<pub-id pub-id-type="pmid">18088093</pub-id>
</mixed-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Germershaus</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Neu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Behe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kissel</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>HER2 targeted polyplexes: the effect of polyplex composition and conjugation chemistry on
<italic>in vitro</italic>
and
<italic>in vivo</italic>
characteristics</article-title>
<source>Bioconjug Chem</source>
<year>2008</year>
<volume>19</volume>
<fpage>244</fpage>
<lpage>253</lpage>
<pub-id pub-id-type="doi">10.1021/bc700311n</pub-id>
<pub-id pub-id-type="pmid">18034452</pub-id>
</mixed-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merkel</surname>
<given-names>OM</given-names>
</name>
<name>
<surname>Germershaus</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Wada</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Tarcha</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Merdan</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kissel</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Integrin alphaVbeta3 targeted gene delivery using RGD peptidomimetic conjugates with copolymers of PEGylated poly(ethylene imine)</article-title>
<source>Bioconjug Chem</source>
<year>2009</year>
<volume>20</volume>
<fpage>1270</fpage>
<lpage>1280</lpage>
<pub-id pub-id-type="doi">10.1021/bc9001695</pub-id>
<pub-id pub-id-type="pmid">19476331</pub-id>
</mixed-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verbaan</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Oussoren</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Snel</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Crommelin</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Hennink</surname>
<given-names>WE</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Steric stabilization of poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes mediates prolonged circulation and tumor targeting in mice</article-title>
<source>J Gene Med</source>
<year>2004</year>
<volume>6</volume>
<fpage>64</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="doi">10.1002/jgm.475</pub-id>
<pub-id pub-id-type="pmid">14716678</pub-id>
</mixed-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mao</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Neu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Germershaus</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Merkel</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Sitterberg</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bakowsky</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Kissel</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes</article-title>
<source>Bioconjug Chem</source>
<year>2006</year>
<volume>17</volume>
<fpage>1209</fpage>
<lpage>1218</lpage>
<pub-id pub-id-type="doi">10.1021/bc060129j</pub-id>
<pub-id pub-id-type="pmid">16984130</pub-id>
</mixed-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bartlettand</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>ME</given-names>
</name>
</person-group>
<article-title>Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles</article-title>
<source>Bioconjug Chem</source>
<year>2007</year>
<volume>18</volume>
<fpage>456</fpage>
<lpage>468</lpage>
<pub-id pub-id-type="doi">10.1021/bc0603539</pub-id>
<pub-id pub-id-type="pmid">17326672</pub-id>
</mixed-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pun</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>ME</given-names>
</name>
</person-group>
<article-title>Development of a nonviral gene delivery vehicle for systemic application</article-title>
<source>Bioconjug Chem</source>
<year>2002</year>
<volume>13</volume>
<fpage>630</fpage>
<lpage>639</lpage>
<pub-id pub-id-type="doi">10.1021/bc0155768</pub-id>
<pub-id pub-id-type="pmid">12009955</pub-id>
</mixed-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buyens</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lucas</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Raemdonck</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Braeckmans</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Vercammen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hendrix</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Engelborghs</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Smedt</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Sanders</surname>
<given-names>NN</given-names>
</name>
</person-group>
<article-title>A fast and sensitive method for measuring the integrity of siRNA-carrier complexes in full human serum</article-title>
<source>J Control Release</source>
<year>2008</year>
<volume>126</volume>
<fpage>67</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="doi">10.1016/j.jconrel.2007.10.024</pub-id>
<pub-id pub-id-type="pmid">18068258</pub-id>
</mixed-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruponen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ronkko</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Honkakoski</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Pelkonen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tammi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Urtti</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Extracellular glycosaminoglycans modify cellular trafficking of lipoplexes and polyplexes</article-title>
<source>J Biol Chem</source>
<year>2001</year>
<volume>276</volume>
<fpage>33875</fpage>
<lpage>33880</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M011553200</pub-id>
<pub-id pub-id-type="pmid">11390375</pub-id>
</mixed-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kircheis</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wightman</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Schreiber</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Robitza</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rossler</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kursa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application</article-title>
<source>Gene Ther</source>
<year>2001</year>
<volume>8</volume>
<fpage>28</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="doi">10.1038/sj.gt.3301351</pub-id>
<pub-id pub-id-type="pmid">11402299</pub-id>
</mixed-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verbaan</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dam</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Takakura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hashida</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hennink</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Oussoren</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Intravenous fate of poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes</article-title>
<source>Eur J Pharm Sci</source>
<year>2003</year>
<volume>20</volume>
<fpage>419</fpage>
<lpage>427</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejps.2003.09.005</pub-id>
<pub-id pub-id-type="pmid">14659486</pub-id>
</mixed-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sitterberg</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bakowsky</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Kissel</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Stabilized nanocarriers for plasmids based upon cross-linked poly(ethylene imine)</article-title>
<source>Biomacromolecules</source>
<year>2006</year>
<volume>7</volume>
<fpage>3428</fpage>
<lpage>3438</lpage>
<pub-id pub-id-type="doi">10.1021/bm060788z</pub-id>
<pub-id pub-id-type="pmid">17154471</pub-id>
</mixed-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akagi</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Oba</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Koyama</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nishiyama</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Fukushima</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Miyata</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nagawa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kataoka</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Biocompatible micellar nanovectors achieve efficient gene transfer to vascular lesions without cytotoxicity and thrombus formation</article-title>
<source>Gene Ther</source>
<year>2007</year>
<volume>14</volume>
<fpage>1029</fpage>
<lpage>1038</lpage>
<pub-id pub-id-type="doi">10.1038/sj.gt.3302945</pub-id>
<pub-id pub-id-type="pmid">17460721</pub-id>
</mixed-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mishra</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>ME</given-names>
</name>
</person-group>
<article-title>PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles</article-title>
<source>Eur J Cell Biol</source>
<year>2004</year>
<volume>83</volume>
<fpage>97</fpage>
<lpage>111</lpage>
<pub-id pub-id-type="doi">10.1078/0171-9335-00363</pub-id>
<pub-id pub-id-type="pmid">15202568</pub-id>
</mixed-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mok</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>TG</given-names>
</name>
</person-group>
<article-title>PEGylated and MMP-2 specifically dePEGylated quantum dots: comparative evaluation of cellular uptake</article-title>
<source>Langmuir</source>
<year>2009</year>
<volume>25</volume>
<fpage>1645</fpage>
<lpage>1650</lpage>
<pub-id pub-id-type="doi">10.1021/la803542v</pub-id>
<pub-id pub-id-type="pmid">19117377</pub-id>
</mixed-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schiffelers</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Ansari</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Storm</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Molema</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>PY</given-names>
</name>
<name>
<surname>Scaria</surname>
<given-names>PV</given-names>
</name>
<name>
<surname>Woodle</surname>
<given-names>MC</given-names>
</name>
</person-group>
<article-title>Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle</article-title>
<source>Nucleic Acids Res</source>
<year>2004</year>
<volume>32</volume>
<fpage>e149</fpage>
<pub-id pub-id-type="doi">10.1093/nar/gnh140</pub-id>
<pub-id pub-id-type="pmid">15520458</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Belgique/explor/OpenAccessBelV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000181 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000181 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Belgique
   |area=    OpenAccessBelV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3264854
   |texte=   Physicochemical and Biological Evaluation of siRNA Polyplexes Based on PEGylated Poly(amido amine)s
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:21833793" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OpenAccessBelV2 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Dec 1 00:43:49 2016. Site generation: Wed Mar 6 14:51:30 2024