Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessment of Tissue-Engineered Islet Graft Viability by Fluorine Magnetic Resonance Spectroscopy

Identifieur interne : 000660 ( PascalFrancis/Curation ); précédent : 000659; suivant : 000661

Assessment of Tissue-Engineered Islet Graft Viability by Fluorine Magnetic Resonance Spectroscopy

Auteurs : T. M. Suszynski [États-Unis] ; E. S. Avgoustiniatos [États-Unis] ; S. A. Stein [États-Unis] ; E. J. Falde [États-Unis] ; B. E. Hammer [États-Unis] ; K. K. Papas [États-Unis]

Source :

RBID : Pascal:12-0017463

Descripteurs français

English descriptors

Abstract

Introduction. Despite significant progress in the last decade, islet transplantation remains an experimental therapy for a limited number of patients with type 1 diabetes. Tissue-engineered approaches may provide promising alternatives to the current clinical protocol and would benefit greatly from concurrent development of graft quality assessment techniques. This study was designed to evaluate whether viability of tissue-engineered islet grafts can be assessed using fluorine magnetic resonance spectroscopy (19F-MRS), by the noninvasive measurement of oxygen partial pressure (pO2) and the subsequent calculation of islet oxygen consumption rate (OCR). Methods. Scaffolds composed of porcine plasma were seeded with human islets and perfluorodecalin. Each graft was covered with the same volume of culture media in a Petri dish. Four scaffolds were seeded with various numbers (0-8000) of islet equivalents (IE) aliquoted from the same preparation. After randomizing run order, grafts were examined by 19F-MRS at 37°C using a 5T spectrometer and a single-loop surface coil placed underneath. A standard inversion recovery sequence was used to obtain characteristic 19F spin-lattice relaxation times (T1), which were converted to steady-state average pO2 estimates using a previously determined linear calibration (R2 = 1.000). Each condition was assessed using replicate 19F-MRS measurements (n = 6-8). Results. Grafts exhibited IE dose-dependent increases in T1 and decreases in pO2 estimates. From the difference between scaffold pO2 estimates and ambient pO2, the islet preparation OCR was calculated to be 95 ± 12 (mean ± standard error of the mean) nmol/(min . mg DNA) using theoretical modeling. This value compared well with OCR values measured using established methods for human islet preparations. Conclusions. 19F-MRS can be used for noninvasive pre- and possibly posttransplant assessment of tissue-engineered islet graft viability by estimating the amount of viable, oxygen-consuming tissue in a scaffold.
pA  
A01 01  1    @0 0041-1345
A02 01      @0 TRPPA8
A03   1    @0 Transplant. proc.
A05       @2 43
A06       @2 9
A08 01  1  ENG  @1 Assessment of Tissue-Engineered Islet Graft Viability by Fluorine Magnetic Resonance Spectroscopy
A11 01  1    @1 SUSZYNSKI (T. M.)
A11 02  1    @1 AVGOUSTINIATOS (E. S.)
A11 03  1    @1 STEIN (S. A.)
A11 04  1    @1 FALDE (E. J.)
A11 05  1    @1 HAMMER (B. E.)
A11 06  1    @1 PAPAS (K. K)
A14 01      @1 Schulze Diabetes Institute, Department of Surgery, University of Minnesota @2 Minneapolis, Minnesota @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 6 aut.
A14 02      @1 Center for Interdisciplinary Applications in Magnetic Resonance, Department of Radiology, University of Minnesota @2 Minneapolis, Minnesota @3 USA @Z 5 aut.
A20       @1 3221-3225
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 14765 @5 354000507348890180
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 38 ref.
A47 01  1    @0 12-0017463
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Transplantation proceedings
A66 01      @0 NLD
C01 01    ENG  @0 Introduction. Despite significant progress in the last decade, islet transplantation remains an experimental therapy for a limited number of patients with type 1 diabetes. Tissue-engineered approaches may provide promising alternatives to the current clinical protocol and would benefit greatly from concurrent development of graft quality assessment techniques. This study was designed to evaluate whether viability of tissue-engineered islet grafts can be assessed using fluorine magnetic resonance spectroscopy (19F-MRS), by the noninvasive measurement of oxygen partial pressure (pO2) and the subsequent calculation of islet oxygen consumption rate (OCR). Methods. Scaffolds composed of porcine plasma were seeded with human islets and perfluorodecalin. Each graft was covered with the same volume of culture media in a Petri dish. Four scaffolds were seeded with various numbers (0-8000) of islet equivalents (IE) aliquoted from the same preparation. After randomizing run order, grafts were examined by 19F-MRS at 37°C using a 5T spectrometer and a single-loop surface coil placed underneath. A standard inversion recovery sequence was used to obtain characteristic 19F spin-lattice relaxation times (T1), which were converted to steady-state average pO2 estimates using a previously determined linear calibration (R2 = 1.000). Each condition was assessed using replicate 19F-MRS measurements (n = 6-8). Results. Grafts exhibited IE dose-dependent increases in T1 and decreases in pO2 estimates. From the difference between scaffold pO2 estimates and ambient pO2, the islet preparation OCR was calculated to be 95 ± 12 (mean ± standard error of the mean) nmol/(min . mg DNA) using theoretical modeling. This value compared well with OCR values measured using established methods for human islet preparations. Conclusions. 19F-MRS can be used for noninvasive pre- and possibly posttransplant assessment of tissue-engineered islet graft viability by estimating the amount of viable, oxygen-consuming tissue in a scaffold.
C02 01  X    @0 002B25
C02 02  X    @0 002A06F
C03 01  X  FRE  @0 Greffe @5 01
C03 01  X  ENG  @0 Graft @5 01
C03 01  X  SPA  @0 Injerto @5 01
C03 02  X  FRE  @0 Culture tissu @5 02
C03 02  X  ENG  @0 Tissue culture @5 02
C03 02  X  SPA  @0 Cultivo tejido @5 02
C03 03  X  FRE  @0 Génie tissulaire @5 03
C03 03  X  ENG  @0 Tissue engineering @5 03
C03 03  X  SPA  @0 Ingeniería de tejidos @5 03
C03 04  X  FRE  @0 Spectrométrie RMN @5 04
C03 04  X  ENG  @0 NMR spectrometry @5 04
C03 04  X  SPA  @0 Espectrometría RMN @5 04
C03 05  X  FRE  @0 Ilot Langerhans @5 05
C03 05  X  ENG  @0 Langerhans islet @5 05
C03 05  X  SPA  @0 Isla Langerhans @5 05
C03 06  X  FRE  @0 Viabilité @5 06
C03 06  X  ENG  @0 Viability @5 06
C03 06  X  SPA  @0 Viabilidad @5 06
C03 07  X  FRE  @0 Fluor @2 NC @2 FX @5 08
C03 07  X  ENG  @0 Fluorine @2 NC @2 FX @5 08
C03 07  X  SPA  @0 Fluor @2 NC @2 FX @5 08
C03 08  X  FRE  @0 Médecine @5 09
C03 08  X  ENG  @0 Medicine @5 09
C03 08  X  SPA  @0 Medicina @5 09
C03 09  X  FRE  @0 Transplantation @5 11
C03 09  X  ENG  @0 Transplantation @5 11
C03 09  X  SPA  @0 Trasplantación @5 11
C03 10  X  FRE  @0 Traitement @5 25
C03 10  X  ENG  @0 Treatment @5 25
C03 10  X  SPA  @0 Tratamiento @5 25
C07 01  X  FRE  @0 Pancréas endocrine @5 37
C07 01  X  ENG  @0 Endocrine pancreas @5 37
C07 01  X  SPA  @0 Páncreas endocrino @5 37
C07 02  X  FRE  @0 Chirurgie @5 38
C07 02  X  ENG  @0 Surgery @5 38
C07 02  X  SPA  @0 Cirugía @5 38
N21       @1 002
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 World Congress of the International Pancreas and Islet Transplant Association (IPITA) @3 CZE @4 2011-06-01

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0017463

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Assessment of Tissue-Engineered Islet Graft Viability by Fluorine Magnetic Resonance Spectroscopy</title>
<author>
<name sortKey="Suszynski, T M" sort="Suszynski, T M" uniqKey="Suszynski T" first="T. M." last="Suszynski">T. M. Suszynski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Schulze Diabetes Institute, Department of Surgery, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Avgoustiniatos, E S" sort="Avgoustiniatos, E S" uniqKey="Avgoustiniatos E" first="E. S." last="Avgoustiniatos">E. S. Avgoustiniatos</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Schulze Diabetes Institute, Department of Surgery, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Stein, S A" sort="Stein, S A" uniqKey="Stein S" first="S. A." last="Stein">S. A. Stein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Schulze Diabetes Institute, Department of Surgery, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Falde, E J" sort="Falde, E J" uniqKey="Falde E" first="E. J." last="Falde">E. J. Falde</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Schulze Diabetes Institute, Department of Surgery, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Hammer, B E" sort="Hammer, B E" uniqKey="Hammer B" first="B. E." last="Hammer">B. E. Hammer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for Interdisciplinary Applications in Magnetic Resonance, Department of Radiology, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Papas, K K" sort="Papas, K K" uniqKey="Papas K" first="K. K" last="Papas">K. K. Papas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Schulze Diabetes Institute, Department of Surgery, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0017463</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0017463 INIST</idno>
<idno type="RBID">Pascal:12-0017463</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000112</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000660</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Assessment of Tissue-Engineered Islet Graft Viability by Fluorine Magnetic Resonance Spectroscopy</title>
<author>
<name sortKey="Suszynski, T M" sort="Suszynski, T M" uniqKey="Suszynski T" first="T. M." last="Suszynski">T. M. Suszynski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Schulze Diabetes Institute, Department of Surgery, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Avgoustiniatos, E S" sort="Avgoustiniatos, E S" uniqKey="Avgoustiniatos E" first="E. S." last="Avgoustiniatos">E. S. Avgoustiniatos</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Schulze Diabetes Institute, Department of Surgery, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Stein, S A" sort="Stein, S A" uniqKey="Stein S" first="S. A." last="Stein">S. A. Stein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Schulze Diabetes Institute, Department of Surgery, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Falde, E J" sort="Falde, E J" uniqKey="Falde E" first="E. J." last="Falde">E. J. Falde</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Schulze Diabetes Institute, Department of Surgery, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Hammer, B E" sort="Hammer, B E" uniqKey="Hammer B" first="B. E." last="Hammer">B. E. Hammer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for Interdisciplinary Applications in Magnetic Resonance, Department of Radiology, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Papas, K K" sort="Papas, K K" uniqKey="Papas K" first="K. K" last="Papas">K. K. Papas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Schulze Diabetes Institute, Department of Surgery, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Transplantation proceedings</title>
<title level="j" type="abbreviated">Transplant. proc.</title>
<idno type="ISSN">0041-1345</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Transplantation proceedings</title>
<title level="j" type="abbreviated">Transplant. proc.</title>
<idno type="ISSN">0041-1345</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fluorine</term>
<term>Graft</term>
<term>Langerhans islet</term>
<term>Medicine</term>
<term>NMR spectrometry</term>
<term>Tissue culture</term>
<term>Tissue engineering</term>
<term>Transplantation</term>
<term>Treatment</term>
<term>Viability</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Greffe</term>
<term>Culture tissu</term>
<term>Génie tissulaire</term>
<term>Spectrométrie RMN</term>
<term>Ilot Langerhans</term>
<term>Viabilité</term>
<term>Fluor</term>
<term>Médecine</term>
<term>Transplantation</term>
<term>Traitement</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Fluor</term>
<term>Médecine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Introduction. Despite significant progress in the last decade, islet transplantation remains an experimental therapy for a limited number of patients with type 1 diabetes. Tissue-engineered approaches may provide promising alternatives to the current clinical protocol and would benefit greatly from concurrent development of graft quality assessment techniques. This study was designed to evaluate whether viability of tissue-engineered islet grafts can be assessed using fluorine magnetic resonance spectroscopy (
<sup>19</sup>
F-MRS), by the noninvasive measurement of oxygen partial pressure (pO
<sub>2</sub>
) and the subsequent calculation of islet oxygen consumption rate (OCR). Methods. Scaffolds composed of porcine plasma were seeded with human islets and perfluorodecalin. Each graft was covered with the same volume of culture media in a Petri dish. Four scaffolds were seeded with various numbers (0-8000) of islet equivalents (IE) aliquoted from the same preparation. After randomizing run order, grafts were examined by
<sup>19</sup>
F-MRS at 37°C using a 5T spectrometer and a single-loop surface coil placed underneath. A standard inversion recovery sequence was used to obtain characteristic
<sup>19</sup>
F spin-lattice relaxation times (T1), which were converted to steady-state average pO
<sub>2</sub>
estimates using a previously determined linear calibration (R
<sup>2</sup>
= 1.000). Each condition was assessed using replicate
<sup>19</sup>
F-MRS measurements (n = 6-8). Results. Grafts exhibited IE dose-dependent increases in T1 and decreases in pO
<sub>2</sub>
estimates. From the difference between scaffold pO
<sub>2</sub>
estimates and ambient pO
<sub>2</sub>
, the islet preparation OCR was calculated to be 95 ± 12 (mean ± standard error of the mean) nmol/(min . mg DNA) using theoretical modeling. This value compared well with OCR values measured using established methods for human islet preparations. Conclusions.
<sup>19</sup>
F-MRS can be used for noninvasive pre- and possibly posttransplant assessment of tissue-engineered islet graft viability by estimating the amount of viable, oxygen-consuming tissue in a scaffold.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0041-1345</s0>
</fA01>
<fA02 i1="01">
<s0>TRPPA8</s0>
</fA02>
<fA03 i2="1">
<s0>Transplant. proc.</s0>
</fA03>
<fA05>
<s2>43</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Assessment of Tissue-Engineered Islet Graft Viability by Fluorine Magnetic Resonance Spectroscopy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SUSZYNSKI (T. M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AVGOUSTINIATOS (E. S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>STEIN (S. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FALDE (E. J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HAMMER (B. E.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PAPAS (K. K)</s1>
</fA11>
<fA14 i1="01">
<s1>Schulze Diabetes Institute, Department of Surgery, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Center for Interdisciplinary Applications in Magnetic Resonance, Department of Radiology, University of Minnesota</s1>
<s2>Minneapolis, Minnesota</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>3221-3225</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14765</s2>
<s5>354000507348890180</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0017463</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Transplantation proceedings</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Introduction. Despite significant progress in the last decade, islet transplantation remains an experimental therapy for a limited number of patients with type 1 diabetes. Tissue-engineered approaches may provide promising alternatives to the current clinical protocol and would benefit greatly from concurrent development of graft quality assessment techniques. This study was designed to evaluate whether viability of tissue-engineered islet grafts can be assessed using fluorine magnetic resonance spectroscopy (
<sup>19</sup>
F-MRS), by the noninvasive measurement of oxygen partial pressure (pO
<sub>2</sub>
) and the subsequent calculation of islet oxygen consumption rate (OCR). Methods. Scaffolds composed of porcine plasma were seeded with human islets and perfluorodecalin. Each graft was covered with the same volume of culture media in a Petri dish. Four scaffolds were seeded with various numbers (0-8000) of islet equivalents (IE) aliquoted from the same preparation. After randomizing run order, grafts were examined by
<sup>19</sup>
F-MRS at 37°C using a 5T spectrometer and a single-loop surface coil placed underneath. A standard inversion recovery sequence was used to obtain characteristic
<sup>19</sup>
F spin-lattice relaxation times (T1), which were converted to steady-state average pO
<sub>2</sub>
estimates using a previously determined linear calibration (R
<sup>2</sup>
= 1.000). Each condition was assessed using replicate
<sup>19</sup>
F-MRS measurements (n = 6-8). Results. Grafts exhibited IE dose-dependent increases in T1 and decreases in pO
<sub>2</sub>
estimates. From the difference between scaffold pO
<sub>2</sub>
estimates and ambient pO
<sub>2</sub>
, the islet preparation OCR was calculated to be 95 ± 12 (mean ± standard error of the mean) nmol/(min . mg DNA) using theoretical modeling. This value compared well with OCR values measured using established methods for human islet preparations. Conclusions.
<sup>19</sup>
F-MRS can be used for noninvasive pre- and possibly posttransplant assessment of tissue-engineered islet graft viability by estimating the amount of viable, oxygen-consuming tissue in a scaffold.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B25</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A06F</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Greffe</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Graft</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Injerto</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Culture tissu</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Tissue culture</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Cultivo tejido</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Génie tissulaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Tissue engineering</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Ingeniería de tejidos</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Spectrométrie RMN</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>NMR spectrometry</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Espectrometría RMN</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Ilot Langerhans</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Langerhans islet</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Isla Langerhans</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Viabilité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Viability</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Viabilidad</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Fluor</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Fluorine</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Fluor</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Médecine</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Medicine</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Medicina</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Transplantation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Transplantation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Trasplantación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Traitement</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Treatment</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Tratamiento</s0>
<s5>25</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Pancréas endocrine</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Endocrine pancreas</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Páncreas endocrino</s0>
<s5>37</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Chirurgie</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Surgery</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Cirugía</s0>
<s5>38</s5>
</fC07>
<fN21>
<s1>002</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>World Congress of the International Pancreas and Islet Transplant Association (IPITA)</s1>
<s3>CZE</s3>
<s4>2011-06-01</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000660 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000660 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0017463
   |texte=   Assessment of Tissue-Engineered Islet Graft Viability by Fluorine Magnetic Resonance Spectroscopy
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024