Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An efficient and scalable deformable model for virtual reality-based medical applications.

Identifieur interne : 001A98 ( PubMed/Curation ); précédent : 001A97; suivant : 001A99

An efficient and scalable deformable model for virtual reality-based medical applications.

Auteurs : Kup-Sze Choi [République populaire de Chine] ; Hanqiu Sun ; Pheng-Ann Heng

Source :

RBID : pubmed:15350624

English descriptors

Abstract

Modeling of tissue deformation is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively deformable virtual tissues. In this paper, an efficient and scalable deformable model is presented for virtual-reality-based medical applications. It considers deformation as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the model parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the model have been evaluated. The model has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.

DOI: 10.1016/j.artmed.2004.01.013
PubMed: 15350624

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15350624

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An efficient and scalable deformable model for virtual reality-based medical applications.</title>
<author>
<name sortKey="Choi, Kup Sze" sort="Choi, Kup Sze" uniqKey="Choi K" first="Kup-Sze" last="Choi">Kup-Sze Choi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science and Engineering, Chinese University of Hong Kong, New Territories, Hong Kong, China. kschoi1@cse.cuhk.edu.hk</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Computer Science and Engineering, Chinese University of Hong Kong, New Territories, Hong Kong</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sun, Hanqiu" sort="Sun, Hanqiu" uniqKey="Sun H" first="Hanqiu" last="Sun">Hanqiu Sun</name>
</author>
<author>
<name sortKey="Heng, Pheng Ann" sort="Heng, Pheng Ann" uniqKey="Heng P" first="Pheng-Ann" last="Heng">Pheng-Ann Heng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15350624</idno>
<idno type="pmid">15350624</idno>
<idno type="doi">10.1016/j.artmed.2004.01.013</idno>
<idno type="wicri:Area/PubMed/Corpus">001A98</idno>
<idno type="wicri:Area/PubMed/Curation">001A98</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An efficient and scalable deformable model for virtual reality-based medical applications.</title>
<author>
<name sortKey="Choi, Kup Sze" sort="Choi, Kup Sze" uniqKey="Choi K" first="Kup-Sze" last="Choi">Kup-Sze Choi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science and Engineering, Chinese University of Hong Kong, New Territories, Hong Kong, China. kschoi1@cse.cuhk.edu.hk</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Computer Science and Engineering, Chinese University of Hong Kong, New Territories, Hong Kong</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sun, Hanqiu" sort="Sun, Hanqiu" uniqKey="Sun H" first="Hanqiu" last="Sun">Hanqiu Sun</name>
</author>
<author>
<name sortKey="Heng, Pheng Ann" sort="Heng, Pheng Ann" uniqKey="Heng P" first="Pheng-Ann" last="Heng">Pheng-Ann Heng</name>
</author>
</analytic>
<series>
<title level="j">Artificial intelligence in medicine</title>
<idno type="ISSN">0933-3657</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Biomechanical Phenomena</term>
<term>Computer Simulation</term>
<term>Connective Tissue (physiology)</term>
<term>Humans</term>
<term>Models, Theoretical</term>
<term>Rheology</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Connective Tissue</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Biomechanical Phenomena</term>
<term>Computer Simulation</term>
<term>Humans</term>
<term>Models, Theoretical</term>
<term>Rheology</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Modeling of tissue deformation is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively deformable virtual tissues. In this paper, an efficient and scalable deformable model is presented for virtual-reality-based medical applications. It considers deformation as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the model parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the model have been evaluated. The model has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">15350624</PMID>
<DateCreated>
<Year>2004</Year>
<Month>09</Month>
<Day>07</Day>
</DateCreated>
<DateCompleted>
<Year>2004</Year>
<Month>12</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0933-3657</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>32</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2004</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Artificial intelligence in medicine</Title>
<ISOAbbreviation>Artif Intell Med</ISOAbbreviation>
</Journal>
<ArticleTitle>An efficient and scalable deformable model for virtual reality-based medical applications.</ArticleTitle>
<Pagination>
<MedlinePgn>51-69</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Modeling of tissue deformation is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively deformable virtual tissues. In this paper, an efficient and scalable deformable model is presented for virtual-reality-based medical applications. It considers deformation as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the model parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the model have been evaluated. The model has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Choi</LastName>
<ForeName>Kup-Sze</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science and Engineering, Chinese University of Hong Kong, New Territories, Hong Kong, China. kschoi1@cse.cuhk.edu.hk</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Hanqiu</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Heng</LastName>
<ForeName>Pheng-Ann</ForeName>
<Initials>PA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Artif Intell Med</MedlineTA>
<NlmUniqueID>8915031</NlmUniqueID>
<ISSNLinking>0933-3657</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003238">Connective Tissue</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008962">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012212">Rheology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>41</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2003</Year>
<Month>Apr</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2003</Year>
<Month>Oct</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2004</Year>
<Month>Jan</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15350624</ArticleId>
<ArticleId IdType="doi">10.1016/j.artmed.2004.01.013</ArticleId>
<ArticleId IdType="pii">S0933365704000363</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A98 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001A98 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:15350624
   |texte=   An efficient and scalable deformable model for virtual reality-based medical applications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:15350624" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024