Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bimanual haptic workstation for laparoscopic surgery simulation.

Identifieur interne : 001D73 ( PubMed/Corpus ); précédent : 001D72; suivant : 001D74

Bimanual haptic workstation for laparoscopic surgery simulation.

Auteurs : V. Devarajan ; D. Scott ; D. Jones ; R. Rege ; R. Eberhart ; C. Lindahl ; P. Tanguy ; R. Fernandez

Source :

RBID : pubmed:11317725

English descriptors

Abstract

Realistic laparoscopic surgical simulators will require real-time graphic imaging and tactile feedback. Our research objective is to develop a cost-effective haptic workstation for the simulation of laparoscopic procedures for training and treatment planning. The physical station consists of a custom-built frame into which laparoscopic trocars and surgical tools may be attached/inserted and which are continuously adjustable to various positions and orientations to simulate multiple laparoscopic surgical approaches. Instruments inserted through the trocars are attached to end effectors of two haptic devices and interfaced to a high speed PC with fast graphics capability. The haptic device transduces 3D motion of the two manually operated surgical instruments into slave maneuvers in virtual space. The slave instrument tips probe the simulated organ. Simulations currently in progress include: 1) Surface-only renderings, deformation, and haptic interactions with elements in the gall gladder surgical field; 2) Voxel-based simulations of the bulk manipulation of tissue; 3) laparoscopic herniorrhaphy. This system provides force feed-forward from the grasped tools to the contact tissue in virtual space, with deformation of the tissue by the virtual probe, and force feedback from the deformed tissue to the operator's hands.

PubMed: 11317725

Links to Exploration step

pubmed:11317725

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bimanual haptic workstation for laparoscopic surgery simulation.</title>
<author>
<name sortKey="Devarajan, V" sort="Devarajan, V" uniqKey="Devarajan V" first="V" last="Devarajan">V. Devarajan</name>
<affiliation>
<nlm:affiliation>Dept of Electrical Engineering, University of Texas at Arlington, 410 Yates Street, M/S 19077 Arlington, TX 76019, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scott, D" sort="Scott, D" uniqKey="Scott D" first="D" last="Scott">D. Scott</name>
</author>
<author>
<name sortKey="Jones, D" sort="Jones, D" uniqKey="Jones D" first="D" last="Jones">D. Jones</name>
</author>
<author>
<name sortKey="Rege, R" sort="Rege, R" uniqKey="Rege R" first="R" last="Rege">R. Rege</name>
</author>
<author>
<name sortKey="Eberhart, R" sort="Eberhart, R" uniqKey="Eberhart R" first="R" last="Eberhart">R. Eberhart</name>
</author>
<author>
<name sortKey="Lindahl, C" sort="Lindahl, C" uniqKey="Lindahl C" first="C" last="Lindahl">C. Lindahl</name>
</author>
<author>
<name sortKey="Tanguy, P" sort="Tanguy, P" uniqKey="Tanguy P" first="P" last="Tanguy">P. Tanguy</name>
</author>
<author>
<name sortKey="Fernandez, R" sort="Fernandez, R" uniqKey="Fernandez R" first="R" last="Fernandez">R. Fernandez</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11317725</idno>
<idno type="pmid">11317725</idno>
<idno type="wicri:Area/PubMed/Corpus">001D73</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bimanual haptic workstation for laparoscopic surgery simulation.</title>
<author>
<name sortKey="Devarajan, V" sort="Devarajan, V" uniqKey="Devarajan V" first="V" last="Devarajan">V. Devarajan</name>
<affiliation>
<nlm:affiliation>Dept of Electrical Engineering, University of Texas at Arlington, 410 Yates Street, M/S 19077 Arlington, TX 76019, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scott, D" sort="Scott, D" uniqKey="Scott D" first="D" last="Scott">D. Scott</name>
</author>
<author>
<name sortKey="Jones, D" sort="Jones, D" uniqKey="Jones D" first="D" last="Jones">D. Jones</name>
</author>
<author>
<name sortKey="Rege, R" sort="Rege, R" uniqKey="Rege R" first="R" last="Rege">R. Rege</name>
</author>
<author>
<name sortKey="Eberhart, R" sort="Eberhart, R" uniqKey="Eberhart R" first="R" last="Eberhart">R. Eberhart</name>
</author>
<author>
<name sortKey="Lindahl, C" sort="Lindahl, C" uniqKey="Lindahl C" first="C" last="Lindahl">C. Lindahl</name>
</author>
<author>
<name sortKey="Tanguy, P" sort="Tanguy, P" uniqKey="Tanguy P" first="P" last="Tanguy">P. Tanguy</name>
</author>
<author>
<name sortKey="Fernandez, R" sort="Fernandez, R" uniqKey="Fernandez R" first="R" last="Fernandez">R. Fernandez</name>
</author>
</analytic>
<series>
<title level="j">Studies in health technology and informatics</title>
<idno type="ISSN">0926-9630</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Graphics (instrumentation)</term>
<term>Computer-Assisted Instruction (instrumentation)</term>
<term>Feedback</term>
<term>Humans</term>
<term>Imaging, Three-Dimensional (instrumentation)</term>
<term>Laparoscopy</term>
<term>Surgical Instruments</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Computer Graphics</term>
<term>Computer-Assisted Instruction</term>
<term>Imaging, Three-Dimensional</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Feedback</term>
<term>Humans</term>
<term>Laparoscopy</term>
<term>Surgical Instruments</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Realistic laparoscopic surgical simulators will require real-time graphic imaging and tactile feedback. Our research objective is to develop a cost-effective haptic workstation for the simulation of laparoscopic procedures for training and treatment planning. The physical station consists of a custom-built frame into which laparoscopic trocars and surgical tools may be attached/inserted and which are continuously adjustable to various positions and orientations to simulate multiple laparoscopic surgical approaches. Instruments inserted through the trocars are attached to end effectors of two haptic devices and interfaced to a high speed PC with fast graphics capability. The haptic device transduces 3D motion of the two manually operated surgical instruments into slave maneuvers in virtual space. The slave instrument tips probe the simulated organ. Simulations currently in progress include: 1) Surface-only renderings, deformation, and haptic interactions with elements in the gall gladder surgical field; 2) Voxel-based simulations of the bulk manipulation of tissue; 3) laparoscopic herniorrhaphy. This system provides force feed-forward from the grasped tools to the contact tissue in virtual space, with deformation of the tissue by the virtual probe, and force feedback from the deformed tissue to the operator's hands.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">11317725</PMID>
<DateCreated>
<Year>2001</Year>
<Month>04</Month>
<Day>24</Day>
</DateCreated>
<DateCompleted>
<Year>2001</Year>
<Month>06</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2004</Year>
<Month>11</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0926-9630</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>81</Volume>
<PubDate>
<Year>2001</Year>
</PubDate>
</JournalIssue>
<Title>Studies in health technology and informatics</Title>
<ISOAbbreviation>Stud Health Technol Inform</ISOAbbreviation>
</Journal>
<ArticleTitle>Bimanual haptic workstation for laparoscopic surgery simulation.</ArticleTitle>
<Pagination>
<MedlinePgn>126-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Realistic laparoscopic surgical simulators will require real-time graphic imaging and tactile feedback. Our research objective is to develop a cost-effective haptic workstation for the simulation of laparoscopic procedures for training and treatment planning. The physical station consists of a custom-built frame into which laparoscopic trocars and surgical tools may be attached/inserted and which are continuously adjustable to various positions and orientations to simulate multiple laparoscopic surgical approaches. Instruments inserted through the trocars are attached to end effectors of two haptic devices and interfaced to a high speed PC with fast graphics capability. The haptic device transduces 3D motion of the two manually operated surgical instruments into slave maneuvers in virtual space. The slave instrument tips probe the simulated organ. Simulations currently in progress include: 1) Surface-only renderings, deformation, and haptic interactions with elements in the gall gladder surgical field; 2) Voxel-based simulations of the bulk manipulation of tissue; 3) laparoscopic herniorrhaphy. This system provides force feed-forward from the grasped tools to the contact tissue in virtual space, with deformation of the tissue by the virtual probe, and force feedback from the deformed tissue to the operator's hands.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Devarajan</LastName>
<ForeName>V</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Dept of Electrical Engineering, University of Texas at Arlington, 410 Yates Street, M/S 19077 Arlington, TX 76019, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scott</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jones</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rege</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eberhart</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lindahl</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tanguy</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fernandez</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Stud Health Technol Inform</MedlineTA>
<NlmUniqueID>9214582</NlmUniqueID>
<ISSNLinking>0926-9630</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>T</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003196">Computer Graphics</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003194">Computer-Assisted Instruction</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005246">Feedback</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D021621">Imaging, Three-Dimensional</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D010535">Laparoscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013525">Surgical Instruments</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11317725</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001D73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:11317725
   |texte=   Bimanual haptic workstation for laparoscopic surgery simulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:11317725" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024