Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.

Identifieur interne : 000E15 ( PubMed/Corpus ); précédent : 000E14; suivant : 000E16

Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.

Auteurs : Samuel B. Kesner ; Robert D. Howe

Source :

RBID : pubmed:21874102

Abstract

Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.

DOI: 10.1109/TMECH.2011.2160353
PubMed: 21874102

Links to Exploration step

pubmed:21874102

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.</title>
<author>
<name sortKey="Kesner, Samuel B" sort="Kesner, Samuel B" uniqKey="Kesner S" first="Samuel B" last="Kesner">Samuel B. Kesner</name>
<affiliation>
<nlm:affiliation>Harvard School of Engineering and Applied Sciences, Cambridge, MA, 02138 USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Howe, Robert D" sort="Howe, Robert D" uniqKey="Howe R" first="Robert D" last="Howe">Robert D. Howe</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1109/TMECH.2011.2160353</idno>
<idno type="RBID">pubmed:21874102</idno>
<idno type="pmid">21874102</idno>
<idno type="wicri:Area/PubMed/Corpus">000E15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.</title>
<author>
<name sortKey="Kesner, Samuel B" sort="Kesner, Samuel B" uniqKey="Kesner S" first="Samuel B" last="Kesner">Samuel B. Kesner</name>
<affiliation>
<nlm:affiliation>Harvard School of Engineering and Applied Sciences, Cambridge, MA, 02138 USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Howe, Robert D" sort="Howe, Robert D" uniqKey="Howe R" first="Robert D" last="Howe">Robert D. Howe</name>
</author>
</analytic>
<series>
<title level="j">IEEE/ASME transactions on mechatronics : a joint publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division</title>
<idno type="ISSN">1083-4435</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">21874102</PMID>
<DateCreated>
<Year>2011</Year>
<Month>9</Month>
<Day>27</Day>
</DateCreated>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1083-4435</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>PP</Volume>
<Issue>99</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>IEEE/ASME transactions on mechatronics : a joint publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division</Title>
<ISOAbbreviation>IEEE ASME Trans Mechatron</ISOAbbreviation>
</Journal>
<ArticleTitle>Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.</ArticleTitle>
<Pagination>
<MedlinePgn>1-5</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.</AbstractText>
</Abstract>
<AuthorList>
<Author>
<LastName>Kesner</LastName>
<ForeName>Samuel B</ForeName>
<Initials>SB</Initials>
<AffiliationInfo>
<Affiliation>Harvard School of Engineering and Applied Sciences, Cambridge, MA, 02138 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author>
<LastName>Howe</LastName>
<ForeName>Robert D</ForeName>
<Initials>RD</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<GrantList>
<Grant>
<GrantID>R01 HL073647</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL073647-10</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="">JOURNAL ARTICLE</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<MedlineTA>IEEE ASME Trans Mechatron</MedlineTA>
<NlmUniqueID>101204402</NlmUniqueID>
<ISSNLinking>1083-4435</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TMECH.2011.2160353</ArticleId>
<ArticleId IdType="pmc">PMC3160640</ArticleId>
<ArticleId IdType="mid">NIHMS316078</ArticleId>
<ArticleId IdType="pubmed">21874102</ArticleId>
</ArticleIdList>
<pmc-dir>nihms</pmc-dir>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E15 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E15 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21874102
   |texte=   Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21874102" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024