Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Serpentine flux path for high torque MRF brakes in haptics applications

Identifieur interne : 000D77 ( PascalFrancis/Curation ); précédent : 000D76; suivant : 000D78

Serpentine flux path for high torque MRF brakes in haptics applications

Auteurs : Doruk Senkal [États-Unis] ; Hakan Gurocak [États-Unis]

Source :

RBID : Pascal:10-0233164

Descripteurs français

English descriptors

Abstract

This research aimed to address two main goals in the development of a rotary magnetorheological fluid (MRF) brake: (1) design of a compact and powerful brake and (2) low friction sealing technique to reduce the off-state braking torque and prevent the fluid from leaking. Using magnetically conductive and nonconductive rings a serpentine flux path was developed to weave the magnetic flux through the MRF. Experimental results showed that, when compared to a commercial MRF brake, our 33% smaller prototype MRF brake could generate 2.7 times more torque (10.9 Nm). A ferro-fluidic sealing technique was developed that resulted in sealing in the fluid and decreased the off-state friction. Further reduction in the off-state torque was obtained by applying a reverse current pulse to collapse a residual magnetic field in the brake. A 1-DOF haptic interface employing the brake enabled crisp virtual wall collision and Coulomb friction simulations.
pA  
A01 01  1    @0 0957-4158
A03   1    @0 Mechatronics : (Oxf.)
A05       @2 20
A06       @2 3
A08 01  1  ENG  @1 Serpentine flux path for high torque MRF brakes in haptics applications
A11 01  1    @1 SENKAL (Doruk)
A11 02  1    @1 GUROCAK (Hakan)
A14 01      @1 School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave. @2 Vancouver, WA 98686 @3 USA @Z 1 aut. @Z 2 aut.
A20       @1 377-383
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 22113 @5 354000181072930050
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 16 ref.
A47 01  1    @0 10-0233164
A60       @1 P
A61       @0 A
A64 01  1    @0 Mechatronics : (Oxford)
A66 01      @0 GBR
C01 01    ENG  @0 This research aimed to address two main goals in the development of a rotary magnetorheological fluid (MRF) brake: (1) design of a compact and powerful brake and (2) low friction sealing technique to reduce the off-state braking torque and prevent the fluid from leaking. Using magnetically conductive and nonconductive rings a serpentine flux path was developed to weave the magnetic flux through the MRF. Experimental results showed that, when compared to a commercial MRF brake, our 33% smaller prototype MRF brake could generate 2.7 times more torque (10.9 Nm). A ferro-fluidic sealing technique was developed that resulted in sealing in the fluid and decreased the off-state friction. Further reduction in the off-state torque was obtained by applying a reverse current pulse to collapse a residual magnetic field in the brake. A 1-DOF haptic interface employing the brake enabled crisp virtual wall collision and Coulomb friction simulations.
C02 01  X    @0 001D02B04
C02 02  X    @0 001D12E04
C02 03  X    @0 001D12D03
C02 04  X    @0 001D02D11
C03 01  X  FRE  @0 Fluide magnétorhéologique @5 06
C03 01  X  ENG  @0 Magnetorheological fluid @5 06
C03 01  X  SPA  @0 Fluido magnetoreologico @5 06
C03 02  X  FRE  @0 Frein électromagnétique @5 07
C03 02  X  ENG  @0 Electromagnetic brake @5 07
C03 02  X  SPA  @0 Freno electromagnético @5 07
C03 03  X  FRE  @0 Joint étanchéité @5 08
C03 03  X  ENG  @0 Seal @5 08
C03 03  X  SPA  @0 Soldadura estanqueidad @5 08
C03 04  X  FRE  @0 Réalité virtuelle @5 09
C03 04  X  ENG  @0 Virtual reality @5 09
C03 04  X  SPA  @0 Realidad virtual @5 09
C03 05  X  FRE  @0 Commande force @5 10
C03 05  X  ENG  @0 Force control @5 10
C03 05  X  SPA  @0 Control fuerza @5 10
C03 06  X  FRE  @0 Sensibilité tactile @5 18
C03 06  X  ENG  @0 Tactile sensitivity @5 18
C03 06  X  SPA  @0 Sensibilidad tactil @5 18
C03 07  X  FRE  @0 Conception compacte @5 19
C03 07  X  ENG  @0 Compact design @5 19
C03 07  X  SPA  @0 Concepción compacta @5 19
C03 08  X  FRE  @0 Freinage @5 20
C03 08  X  ENG  @0 Braking @5 20
C03 08  X  SPA  @0 Frenado @5 20
C03 09  X  FRE  @0 Fluide magnétique @5 21
C03 09  X  ENG  @0 Magnetic fluid @5 21
C03 09  X  SPA  @0 Fluido magnético @5 21
C03 10  X  FRE  @0 Frottement sec @5 22
C03 10  X  ENG  @0 Dry friction @5 22
C03 10  X  SPA  @0 Frotamiento seco @5 22
C03 11  X  FRE  @0 Courant impulsionnel @5 23
C03 11  X  ENG  @0 Pulse current @5 23
C03 11  X  SPA  @0 Corriente impulsional @5 23
C03 12  X  FRE  @0 Interface utilisateur @5 24
C03 12  X  ENG  @0 User interface @5 24
C03 12  X  SPA  @0 Interfase usuario @5 24
C03 13  X  FRE  @0 Etude expérimentale @5 33
C03 13  X  ENG  @0 Experimental study @5 33
C03 13  X  SPA  @0 Estudio experimental @5 33
N21       @1 158
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0233164

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Serpentine flux path for high torque MRF brakes in haptics applications</title>
<author>
<name sortKey="Senkal, Doruk" sort="Senkal, Doruk" uniqKey="Senkal D" first="Doruk" last="Senkal">Doruk Senkal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave.</s1>
<s2>Vancouver, WA 98686</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Gurocak, Hakan" sort="Gurocak, Hakan" uniqKey="Gurocak H" first="Hakan" last="Gurocak">Hakan Gurocak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave.</s1>
<s2>Vancouver, WA 98686</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0233164</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0233164 INIST</idno>
<idno type="RBID">Pascal:10-0233164</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000628</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000D77</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Serpentine flux path for high torque MRF brakes in haptics applications</title>
<author>
<name sortKey="Senkal, Doruk" sort="Senkal, Doruk" uniqKey="Senkal D" first="Doruk" last="Senkal">Doruk Senkal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave.</s1>
<s2>Vancouver, WA 98686</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Gurocak, Hakan" sort="Gurocak, Hakan" uniqKey="Gurocak H" first="Hakan" last="Gurocak">Hakan Gurocak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave.</s1>
<s2>Vancouver, WA 98686</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Mechatronics : (Oxford)</title>
<title level="j" type="abbreviated">Mechatronics : (Oxf.)</title>
<idno type="ISSN">0957-4158</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Mechatronics : (Oxford)</title>
<title level="j" type="abbreviated">Mechatronics : (Oxf.)</title>
<idno type="ISSN">0957-4158</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Braking</term>
<term>Compact design</term>
<term>Dry friction</term>
<term>Electromagnetic brake</term>
<term>Experimental study</term>
<term>Force control</term>
<term>Magnetic fluid</term>
<term>Magnetorheological fluid</term>
<term>Pulse current</term>
<term>Seal</term>
<term>Tactile sensitivity</term>
<term>User interface</term>
<term>Virtual reality</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Fluide magnétorhéologique</term>
<term>Frein électromagnétique</term>
<term>Joint étanchéité</term>
<term>Réalité virtuelle</term>
<term>Commande force</term>
<term>Sensibilité tactile</term>
<term>Conception compacte</term>
<term>Freinage</term>
<term>Fluide magnétique</term>
<term>Frottement sec</term>
<term>Courant impulsionnel</term>
<term>Interface utilisateur</term>
<term>Etude expérimentale</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Réalité virtuelle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This research aimed to address two main goals in the development of a rotary magnetorheological fluid (MRF) brake: (1) design of a compact and powerful brake and (2) low friction sealing technique to reduce the off-state braking torque and prevent the fluid from leaking. Using magnetically conductive and nonconductive rings a serpentine flux path was developed to weave the magnetic flux through the MRF. Experimental results showed that, when compared to a commercial MRF brake, our 33% smaller prototype MRF brake could generate 2.7 times more torque (10.9 Nm). A ferro-fluidic sealing technique was developed that resulted in sealing in the fluid and decreased the off-state friction. Further reduction in the off-state torque was obtained by applying a reverse current pulse to collapse a residual magnetic field in the brake. A 1-DOF haptic interface employing the brake enabled crisp virtual wall collision and Coulomb friction simulations.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4158</s0>
</fA01>
<fA03 i2="1">
<s0>Mechatronics : (Oxf.)</s0>
</fA03>
<fA05>
<s2>20</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Serpentine flux path for high torque MRF brakes in haptics applications</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SENKAL (Doruk)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GUROCAK (Hakan)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave.</s1>
<s2>Vancouver, WA 98686</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>377-383</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22113</s2>
<s5>354000181072930050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>16 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0233164</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Mechatronics : (Oxford)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This research aimed to address two main goals in the development of a rotary magnetorheological fluid (MRF) brake: (1) design of a compact and powerful brake and (2) low friction sealing technique to reduce the off-state braking torque and prevent the fluid from leaking. Using magnetically conductive and nonconductive rings a serpentine flux path was developed to weave the magnetic flux through the MRF. Experimental results showed that, when compared to a commercial MRF brake, our 33% smaller prototype MRF brake could generate 2.7 times more torque (10.9 Nm). A ferro-fluidic sealing technique was developed that resulted in sealing in the fluid and decreased the off-state friction. Further reduction in the off-state torque was obtained by applying a reverse current pulse to collapse a residual magnetic field in the brake. A 1-DOF haptic interface employing the brake enabled crisp virtual wall collision and Coulomb friction simulations.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D12E04</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D12D03</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Fluide magnétorhéologique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Magnetorheological fluid</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fluido magnetoreologico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Frein électromagnétique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electromagnetic brake</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Freno electromagnético</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Joint étanchéité</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Seal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Soldadura estanqueidad</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Réalité virtuelle</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Virtual reality</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Realidad virtual</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Commande force</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Force control</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Control fuerza</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Conception compacte</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Compact design</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Concepción compacta</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Freinage</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Braking</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Frenado</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Fluide magnétique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Magnetic fluid</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Fluido magnético</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Frottement sec</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Dry friction</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Frotamiento seco</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Courant impulsionnel</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Pulse current</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Corriente impulsional</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>User interface</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>33</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>33</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>33</s5>
</fC03>
<fN21>
<s1>158</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000D77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:10-0233164
   |texte=   Serpentine flux path for high torque MRF brakes in haptics applications
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024