Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Control law design for haptic interfaces to virtual reality

Identifieur interne : 001302 ( PascalFrancis/Corpus ); précédent : 001301; suivant : 001303

Control law design for haptic interfaces to virtual reality

Auteurs : R. J. Adams ; B. Hannaford

Source :

RBID : Pascal:02-0198454

Descripteurs français

English descriptors

Abstract

The goal of control law design for haptic displays is to provide a safe and stable user interface while maximizing the operator's sense of kinesthetic immersion in a virtual environment. This paper outlines a control design approach which stabilizes a haptic interface when coupled to a broad class of human operators and virtual environments. Two-port absolute stability criteria are used to develop explicit control law design bounds for two different haptic display implementations: impedance display and admittance display. The strengths and weaknesses of each approach are illustrated through numerical and experimental results for a three degree-of-freedom device. The example highlights the ability of the proposed design procedure to handle some of the more difficult problems in control law synthesis for haptics, including structural flexibility and noncollocation of sensors and actuators.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1063-6536
A03   1    @0 IEEE Trans Control Syst Technol
A05       @2 10
A06       @2 1
A08 01  1  ENG  @1 Control law design for haptic interfaces to virtual reality
A11 01  1    @1 ADAMS (R. J.)
A11 02  1    @1 HANNAFORD (B.)
A14 01      @1 Department of Electrical Engineering University of Washington @2 Seattle, WA 98195-2500 @3 USA @Z 1 aut.
A20       @1 3-13
A21       @1 2002
A23 01      @0 ENG
A43 01      @1 INIST @2 26265
A44       @0 A100
A45       @0 25 Refs.
A47 01  1    @0 02-0198454
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE Transactions on Control Systems Technology
A66 01      @0 USA
C01 01    ENG  @0 The goal of control law design for haptic displays is to provide a safe and stable user interface while maximizing the operator's sense of kinesthetic immersion in a virtual environment. This paper outlines a control design approach which stabilizes a haptic interface when coupled to a broad class of human operators and virtual environments. Two-port absolute stability criteria are used to develop explicit control law design bounds for two different haptic display implementations: impedance display and admittance display. The strengths and weaknesses of each approach are illustrated through numerical and experimental results for a three degree-of-freedom device. The example highlights the ability of the proposed design procedure to handle some of the more difficult problems in control law synthesis for haptics, including structural flexibility and noncollocation of sensors and actuators.
C02 01  X    @0 001D02D
C02 02  X    @0 001D03J03
C02 03  X    @0 001D02B
C02 04  X    @0 001D02D06
C02 05  X    @0 001D12E05
C02 06  3    @0 001B00C40
C03 01  1  ENG  @0 Haptic displays @4 INC
C03 02  1  FRE  @0 Théorie
C03 02  1  ENG  @0 Theory
C03 03  1  FRE  @0 Interface haptique
C03 03  1  ENG  @0 Haptic interfaces
C03 04  1  FRE  @0 Réalité virtuelle
C03 04  1  ENG  @0 Virtual reality
C03 05  1  FRE  @0 Stabilité système
C03 05  1  ENG  @0 System stability
C03 06  1  FRE  @0 Commande contre réaction
C03 06  1  ENG  @0 Feedback control
C03 07  1  FRE  @0 Relation homme machine
C03 07  1  ENG  @0 Human computer interaction
C03 08  1  FRE  @0 Actionneur
C03 08  1  ENG  @0 Actuators
C03 09  1  FRE  @0 Degré liberté
C03 09  1  ENG  @0 Degrees of freedom (mechanics)
C03 10  1  FRE  @0 Algèbre matricielle
C03 10  1  ENG  @0 Matrix algebra
C03 11  1  FRE  @0 Système commande @3 P
C03 11  1  ENG  @0 Control systems @3 P
C03 12  1  FRE  @0 Expérience
C03 12  1  ENG  @0 Experiments
N21       @1 119

Format Inist (serveur)

NO : PASCAL 02-0198454 EI
ET : Control law design for haptic interfaces to virtual reality
AU : ADAMS (R. J.); HANNAFORD (B.)
AF : Department of Electrical Engineering University of Washington/Seattle, WA 98195-2500/Etats-Unis (1 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE Transactions on Control Systems Technology; ISSN 1063-6536; Etats-Unis; Da. 2002; Vol. 10; No. 1; Pp. 3-13; Bibl. 25 Refs.
LA : Anglais
EA : The goal of control law design for haptic displays is to provide a safe and stable user interface while maximizing the operator's sense of kinesthetic immersion in a virtual environment. This paper outlines a control design approach which stabilizes a haptic interface when coupled to a broad class of human operators and virtual environments. Two-port absolute stability criteria are used to develop explicit control law design bounds for two different haptic display implementations: impedance display and admittance display. The strengths and weaknesses of each approach are illustrated through numerical and experimental results for a three degree-of-freedom device. The example highlights the ability of the proposed design procedure to handle some of the more difficult problems in control law synthesis for haptics, including structural flexibility and noncollocation of sensors and actuators.
CC : 001D02D; 001D03J03; 001D02B; 001D02D06; 001D12E05; 001B00C40
FD : Théorie; Interface haptique; Réalité virtuelle; Stabilité système; Commande contre réaction; Relation homme machine; Actionneur; Degré liberté; Algèbre matricielle; Système commande; Expérience
ED : Haptic displays; Theory; Haptic interfaces; Virtual reality; System stability; Feedback control; Human computer interaction; Actuators; Degrees of freedom (mechanics); Matrix algebra; Control systems; Experiments
LO : INIST-26265
ID : 02-0198454

Links to Exploration step

Pascal:02-0198454

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Control law design for haptic interfaces to virtual reality</title>
<author>
<name sortKey="Adams, R J" sort="Adams, R J" uniqKey="Adams R" first="R. J." last="Adams">R. J. Adams</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering University of Washington</s1>
<s2>Seattle, WA 98195-2500</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hannaford, B" sort="Hannaford, B" uniqKey="Hannaford B" first="B." last="Hannaford">B. Hannaford</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">02-0198454</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0198454 EI</idno>
<idno type="RBID">Pascal:02-0198454</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001302</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Control law design for haptic interfaces to virtual reality</title>
<author>
<name sortKey="Adams, R J" sort="Adams, R J" uniqKey="Adams R" first="R. J." last="Adams">R. J. Adams</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering University of Washington</s1>
<s2>Seattle, WA 98195-2500</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hannaford, B" sort="Hannaford, B" uniqKey="Hannaford B" first="B." last="Hannaford">B. Hannaford</name>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE Transactions on Control Systems Technology</title>
<title level="j" type="abbreviated">IEEE Trans Control Syst Technol</title>
<idno type="ISSN">1063-6536</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE Transactions on Control Systems Technology</title>
<title level="j" type="abbreviated">IEEE Trans Control Syst Technol</title>
<idno type="ISSN">1063-6536</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actuators</term>
<term>Control systems</term>
<term>Degrees of freedom (mechanics)</term>
<term>Experiments</term>
<term>Feedback control</term>
<term>Haptic displays</term>
<term>Haptic interfaces</term>
<term>Human computer interaction</term>
<term>Matrix algebra</term>
<term>System stability</term>
<term>Theory</term>
<term>Virtual reality</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Théorie</term>
<term>Interface haptique</term>
<term>Réalité virtuelle</term>
<term>Stabilité système</term>
<term>Commande contre réaction</term>
<term>Relation homme machine</term>
<term>Actionneur</term>
<term>Degré liberté</term>
<term>Algèbre matricielle</term>
<term>Système commande</term>
<term>Expérience</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The goal of control law design for haptic displays is to provide a safe and stable user interface while maximizing the operator's sense of kinesthetic immersion in a virtual environment. This paper outlines a control design approach which stabilizes a haptic interface when coupled to a broad class of human operators and virtual environments. Two-port absolute stability criteria are used to develop explicit control law design bounds for two different haptic display implementations: impedance display and admittance display. The strengths and weaknesses of each approach are illustrated through numerical and experimental results for a three degree-of-freedom device. The example highlights the ability of the proposed design procedure to handle some of the more difficult problems in control law synthesis for haptics, including structural flexibility and noncollocation of sensors and actuators.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1063-6536</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE Trans Control Syst Technol</s0>
</fA03>
<fA05>
<s2>10</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Control law design for haptic interfaces to virtual reality</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ADAMS (R. J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HANNAFORD (B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical Engineering University of Washington</s1>
<s2>Seattle, WA 98195-2500</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>3-13</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26265</s2>
</fA43>
<fA44>
<s0>A100</s0>
</fA44>
<fA45>
<s0>25 Refs.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0198454</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE Transactions on Control Systems Technology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The goal of control law design for haptic displays is to provide a safe and stable user interface while maximizing the operator's sense of kinesthetic immersion in a virtual environment. This paper outlines a control design approach which stabilizes a haptic interface when coupled to a broad class of human operators and virtual environments. Two-port absolute stability criteria are used to develop explicit control law design bounds for two different haptic display implementations: impedance display and admittance display. The strengths and weaknesses of each approach are illustrated through numerical and experimental results for a three degree-of-freedom device. The example highlights the ability of the proposed design procedure to handle some of the more difficult problems in control law synthesis for haptics, including structural flexibility and noncollocation of sensors and actuators.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03J03</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D02B</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02D06</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>001D12E05</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B00C40</s0>
</fC02>
<fC03 i1="01" i2="1" l="ENG">
<s0>Haptic displays</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="1" l="FRE">
<s0>Théorie</s0>
</fC03>
<fC03 i1="02" i2="1" l="ENG">
<s0>Theory</s0>
</fC03>
<fC03 i1="03" i2="1" l="FRE">
<s0>Interface haptique</s0>
</fC03>
<fC03 i1="03" i2="1" l="ENG">
<s0>Haptic interfaces</s0>
</fC03>
<fC03 i1="04" i2="1" l="FRE">
<s0>Réalité virtuelle</s0>
</fC03>
<fC03 i1="04" i2="1" l="ENG">
<s0>Virtual reality</s0>
</fC03>
<fC03 i1="05" i2="1" l="FRE">
<s0>Stabilité système</s0>
</fC03>
<fC03 i1="05" i2="1" l="ENG">
<s0>System stability</s0>
</fC03>
<fC03 i1="06" i2="1" l="FRE">
<s0>Commande contre réaction</s0>
</fC03>
<fC03 i1="06" i2="1" l="ENG">
<s0>Feedback control</s0>
</fC03>
<fC03 i1="07" i2="1" l="FRE">
<s0>Relation homme machine</s0>
</fC03>
<fC03 i1="07" i2="1" l="ENG">
<s0>Human computer interaction</s0>
</fC03>
<fC03 i1="08" i2="1" l="FRE">
<s0>Actionneur</s0>
</fC03>
<fC03 i1="08" i2="1" l="ENG">
<s0>Actuators</s0>
</fC03>
<fC03 i1="09" i2="1" l="FRE">
<s0>Degré liberté</s0>
</fC03>
<fC03 i1="09" i2="1" l="ENG">
<s0>Degrees of freedom (mechanics)</s0>
</fC03>
<fC03 i1="10" i2="1" l="FRE">
<s0>Algèbre matricielle</s0>
</fC03>
<fC03 i1="10" i2="1" l="ENG">
<s0>Matrix algebra</s0>
</fC03>
<fC03 i1="11" i2="1" l="FRE">
<s0>Système commande</s0>
<s3>P</s3>
</fC03>
<fC03 i1="11" i2="1" l="ENG">
<s0>Control systems</s0>
<s3>P</s3>
</fC03>
<fC03 i1="12" i2="1" l="FRE">
<s0>Expérience</s0>
</fC03>
<fC03 i1="12" i2="1" l="ENG">
<s0>Experiments</s0>
</fC03>
<fN21>
<s1>119</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 02-0198454 EI</NO>
<ET>Control law design for haptic interfaces to virtual reality</ET>
<AU>ADAMS (R. J.); HANNAFORD (B.)</AU>
<AF>Department of Electrical Engineering University of Washington/Seattle, WA 98195-2500/Etats-Unis (1 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE Transactions on Control Systems Technology; ISSN 1063-6536; Etats-Unis; Da. 2002; Vol. 10; No. 1; Pp. 3-13; Bibl. 25 Refs.</SO>
<LA>Anglais</LA>
<EA>The goal of control law design for haptic displays is to provide a safe and stable user interface while maximizing the operator's sense of kinesthetic immersion in a virtual environment. This paper outlines a control design approach which stabilizes a haptic interface when coupled to a broad class of human operators and virtual environments. Two-port absolute stability criteria are used to develop explicit control law design bounds for two different haptic display implementations: impedance display and admittance display. The strengths and weaknesses of each approach are illustrated through numerical and experimental results for a three degree-of-freedom device. The example highlights the ability of the proposed design procedure to handle some of the more difficult problems in control law synthesis for haptics, including structural flexibility and noncollocation of sensors and actuators.</EA>
<CC>001D02D; 001D03J03; 001D02B; 001D02D06; 001D12E05; 001B00C40</CC>
<FD>Théorie; Interface haptique; Réalité virtuelle; Stabilité système; Commande contre réaction; Relation homme machine; Actionneur; Degré liberté; Algèbre matricielle; Système commande; Expérience</FD>
<ED>Haptic displays; Theory; Haptic interfaces; Virtual reality; System stability; Feedback control; Human computer interaction; Actuators; Degrees of freedom (mechanics); Matrix algebra; Control systems; Experiments</ED>
<LO>INIST-26265</LO>
<ID>02-0198454</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001302 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001302 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:02-0198454
   |texte=   Control law design for haptic interfaces to virtual reality
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024