Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Representation of orientation in the somatosensory system

Identifieur interne : 001227 ( PascalFrancis/Corpus ); précédent : 001226; suivant : 001228

Representation of orientation in the somatosensory system

Auteurs : Steven S. Hsiao ; John Lane ; Paul Fitzgerald

Source :

RBID : Pascal:02-0583868

Descripteurs français

English descriptors

Abstract

In this paper we discuss how orientation is represented and transformed in the somatosensory system. Information about stimulus orientation plays an important role in sensory processing. In touch it provides critical information about how stimuli are positioned on the hand, which is important for grasping and lifting objects. It also provides important information about tactile shape. Psychophysical studies show that humans have a high capacity to discriminate the orientation of shapes and gratings indented into the finger pad. Further, these studies demonstrate that orientation discrimination is a reliable and stable method for assessing tactile spatial acuity. Neurophysiological studies suggest that orientation information is processed by the slowly adapting type I (SA1) afferent system. While orientation is poorly represented in the responses of individual afferent fibers, it is well represented in the population response properties of peripheral SA1 afferents and in the responses of central neurons in the primary (S1) and secondary (S2) somatosensory cortex. In S2, neurons with orientation selective and orientation non-selective responses tend to have large receptive fields that span multiple pads on multiple digits. Neurons in S2 that are orientation selective have similar tuning functions on different finger pads. These neurons may provide position-invariant responses or may be responsible for integrating features across hands, which is important for haptic object recognition of large shapes from the hand. Neurophysiological studies in trained animals show that the responses of about 85% of the neurons in S2 are affected by the animals focus of attention and that attention to the orientation of a bar modifies both the mean firing rate (i.e. gain) of neurons encoding orientation information and the degree of synchronous firing between pairs of neurons.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0166-4328
A02 01      @0 BBREDI
A03   1    @0 Behav. brain res.
A05       @2 135
A06       @2 1-2
A08 01  1  ENG  @1 Representation of orientation in the somatosensory system
A09 01  1  ENG  @1 Brain Mechanisms of Tactile Perception
A11 01  1    @1 HSIAO (Steven S.)
A11 02  1    @1 LANE (John)
A11 03  1    @1 FITZGERALD (Paul)
A12 01  1    @1 MOHAMMED (Abdul H.) @9 ed.
A12 02  1    @1 TERENIUS (Lars) @9 ed.
A14 01      @1 Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University @2 Baltimore, MD 21218 @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A15 01      @1 Department of Neurotec and Center for Molecular Medicine, Karolinska Institutet @2 Stockholm @3 SWE @Z 1 aut. @Z 2 aut.
A20       @1 93-103
A21       @1 2002
A23 01      @0 ENG
A43 01      @1 INIST @2 18271 @5 354000104957530130
A44       @0 0000 @1 © 2002 INIST-CNRS. All rights reserved.
A45       @0 49 ref.
A47 01  1    @0 02-0583868
A60       @1 P
A61       @0 A
A64 01  1    @0 Behavioural brain research
A66 01      @0 IRL
C01 01    ENG  @0 In this paper we discuss how orientation is represented and transformed in the somatosensory system. Information about stimulus orientation plays an important role in sensory processing. In touch it provides critical information about how stimuli are positioned on the hand, which is important for grasping and lifting objects. It also provides important information about tactile shape. Psychophysical studies show that humans have a high capacity to discriminate the orientation of shapes and gratings indented into the finger pad. Further, these studies demonstrate that orientation discrimination is a reliable and stable method for assessing tactile spatial acuity. Neurophysiological studies suggest that orientation information is processed by the slowly adapting type I (SA1) afferent system. While orientation is poorly represented in the responses of individual afferent fibers, it is well represented in the population response properties of peripheral SA1 afferents and in the responses of central neurons in the primary (S1) and secondary (S2) somatosensory cortex. In S2, neurons with orientation selective and orientation non-selective responses tend to have large receptive fields that span multiple pads on multiple digits. Neurons in S2 that are orientation selective have similar tuning functions on different finger pads. These neurons may provide position-invariant responses or may be responsible for integrating features across hands, which is important for haptic object recognition of large shapes from the hand. Neurophysiological studies in trained animals show that the responses of about 85% of the neurons in S2 are affected by the animals focus of attention and that attention to the orientation of a bar modifies both the mean firing rate (i.e. gain) of neurons encoding orientation information and the degree of synchronous firing between pairs of neurons.
C02 01  X    @0 002A25F
C03 01  X  FRE  @0 Cortex somatosensoriel @5 01
C03 01  X  ENG  @0 Somatosensory cortex @5 01
C03 01  X  SPA  @0 Corteza somatosensorial @5 01
C03 02  X  FRE  @0 Orientation @5 02
C03 02  X  ENG  @0 Orientation @5 02
C03 02  X  SPA  @0 Orientación @5 02
C03 03  X  FRE  @0 Attention @5 03
C03 03  X  ENG  @0 Attention @5 03
C03 03  X  SPA  @0 Atención @5 03
C03 04  X  FRE  @0 Sensibilité tactile @5 04
C03 04  X  ENG  @0 Tactile sensitivity @5 04
C03 04  X  SPA  @0 Sensibilidad tactil @5 04
C03 05  X  FRE  @0 Champ récepteur @5 05
C03 05  X  ENG  @0 Receptive field @5 05
C03 05  X  SPA  @0 Campo receptor @5 05
C03 06  X  FRE  @0 Seuil différentiel @5 06
C03 06  X  ENG  @0 Differential threshold @5 06
C03 06  X  SPA  @0 Umbral diferencial @5 06
C03 07  X  FRE  @0 Discrimination stimulus @5 07
C03 07  X  ENG  @0 Stimulus discrimination @5 07
C03 07  X  SPA  @0 Discriminación estímulo @5 07
C03 08  X  FRE  @0 Fibre nerveuse @5 08
C03 08  X  ENG  @0 Nerve fiber @5 08
C03 08  X  SPA  @0 Fibra nerviosa @5 08
C03 09  X  FRE  @0 Article synthèse @5 57
C03 09  X  ENG  @0 Review @5 57
C03 09  X  SPA  @0 Artículo síntesis @5 57
C03 10  X  FRE  @0 Mécanorécepteur @5 60
C03 10  X  ENG  @0 Mechanoreceptor @5 60
C03 10  X  SPA  @0 Mecanorreceptor @5 60
C03 11  X  FRE  @0 Récepteur sensoriel @5 74
C03 11  X  ENG  @0 Sensory receptor @5 74
C03 11  X  SPA  @0 Receptor sensorial @5 74
C07 01  X  FRE  @0 Voie somesthésique @5 20
C07 01  X  ENG  @0 Somesthetic pathway @5 20
C07 01  X  SPA  @0 Vía somestésica @5 20
C07 02  X  FRE  @0 Encéphale @5 21
C07 02  X  ENG  @0 Brain (vertebrata) @5 21
C07 02  X  SPA  @0 Encéfalo @5 21
C07 03  X  FRE  @0 Système nerveux central @5 22
C07 03  X  ENG  @0 Central nervous system @5 22
C07 03  X  SPA  @0 Sistema nervioso central @5 22
C07 04  X  FRE  @0 Vigilance @5 26
C07 04  X  ENG  @0 Vigilance @5 26
C07 04  X  SPA  @0 Vigilancia @5 26
C07 05  X  FRE  @0 Psychophysique @5 35
C07 05  X  ENG  @0 Psychophysics @5 35
C07 05  X  SPA  @0 Psicofísica @5 35
N21       @1 343

Format Inist (serveur)

NO : PASCAL 02-0583868 INIST
ET : Representation of orientation in the somatosensory system
AU : HSIAO (Steven S.); LANE (John); FITZGERALD (Paul); MOHAMMED (Abdul H.); TERENIUS (Lars)
AF : Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University/Baltimore, MD 21218/Etats-Unis (1 aut., 2 aut., 3 aut.); Department of Neurotec and Center for Molecular Medicine, Karolinska Institutet/Stockholm/Suède (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : Behavioural brain research; ISSN 0166-4328; Coden BBREDI; Irlande; Da. 2002; Vol. 135; No. 1-2; Pp. 93-103; Bibl. 49 ref.
LA : Anglais
EA : In this paper we discuss how orientation is represented and transformed in the somatosensory system. Information about stimulus orientation plays an important role in sensory processing. In touch it provides critical information about how stimuli are positioned on the hand, which is important for grasping and lifting objects. It also provides important information about tactile shape. Psychophysical studies show that humans have a high capacity to discriminate the orientation of shapes and gratings indented into the finger pad. Further, these studies demonstrate that orientation discrimination is a reliable and stable method for assessing tactile spatial acuity. Neurophysiological studies suggest that orientation information is processed by the slowly adapting type I (SA1) afferent system. While orientation is poorly represented in the responses of individual afferent fibers, it is well represented in the population response properties of peripheral SA1 afferents and in the responses of central neurons in the primary (S1) and secondary (S2) somatosensory cortex. In S2, neurons with orientation selective and orientation non-selective responses tend to have large receptive fields that span multiple pads on multiple digits. Neurons in S2 that are orientation selective have similar tuning functions on different finger pads. These neurons may provide position-invariant responses or may be responsible for integrating features across hands, which is important for haptic object recognition of large shapes from the hand. Neurophysiological studies in trained animals show that the responses of about 85% of the neurons in S2 are affected by the animals focus of attention and that attention to the orientation of a bar modifies both the mean firing rate (i.e. gain) of neurons encoding orientation information and the degree of synchronous firing between pairs of neurons.
CC : 002A25F
FD : Cortex somatosensoriel; Orientation; Attention; Sensibilité tactile; Champ récepteur; Seuil différentiel; Discrimination stimulus; Fibre nerveuse; Article synthèse; Mécanorécepteur; Récepteur sensoriel
FG : Voie somesthésique; Encéphale; Système nerveux central; Vigilance; Psychophysique
ED : Somatosensory cortex; Orientation; Attention; Tactile sensitivity; Receptive field; Differential threshold; Stimulus discrimination; Nerve fiber; Review; Mechanoreceptor; Sensory receptor
EG : Somesthetic pathway; Brain (vertebrata); Central nervous system; Vigilance; Psychophysics
SD : Corteza somatosensorial; Orientación; Atención; Sensibilidad tactil; Campo receptor; Umbral diferencial; Discriminación estímulo; Fibra nerviosa; Artículo síntesis; Mecanorreceptor; Receptor sensorial
LO : INIST-18271.354000104957530130
ID : 02-0583868

Links to Exploration step

Pascal:02-0583868

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Representation of orientation in the somatosensory system</title>
<author>
<name sortKey="Hsiao, Steven S" sort="Hsiao, Steven S" uniqKey="Hsiao S" first="Steven S." last="Hsiao">Steven S. Hsiao</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lane, John" sort="Lane, John" uniqKey="Lane J" first="John" last="Lane">John Lane</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fitzgerald, Paul" sort="Fitzgerald, Paul" uniqKey="Fitzgerald P" first="Paul" last="Fitzgerald">Paul Fitzgerald</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">02-0583868</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0583868 INIST</idno>
<idno type="RBID">Pascal:02-0583868</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001227</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Representation of orientation in the somatosensory system</title>
<author>
<name sortKey="Hsiao, Steven S" sort="Hsiao, Steven S" uniqKey="Hsiao S" first="Steven S." last="Hsiao">Steven S. Hsiao</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lane, John" sort="Lane, John" uniqKey="Lane J" first="John" last="Lane">John Lane</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fitzgerald, Paul" sort="Fitzgerald, Paul" uniqKey="Fitzgerald P" first="Paul" last="Fitzgerald">Paul Fitzgerald</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Behavioural brain research</title>
<title level="j" type="abbreviated">Behav. brain res.</title>
<idno type="ISSN">0166-4328</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Behavioural brain research</title>
<title level="j" type="abbreviated">Behav. brain res.</title>
<idno type="ISSN">0166-4328</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Attention</term>
<term>Differential threshold</term>
<term>Mechanoreceptor</term>
<term>Nerve fiber</term>
<term>Orientation</term>
<term>Receptive field</term>
<term>Review</term>
<term>Sensory receptor</term>
<term>Somatosensory cortex</term>
<term>Stimulus discrimination</term>
<term>Tactile sensitivity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cortex somatosensoriel</term>
<term>Orientation</term>
<term>Attention</term>
<term>Sensibilité tactile</term>
<term>Champ récepteur</term>
<term>Seuil différentiel</term>
<term>Discrimination stimulus</term>
<term>Fibre nerveuse</term>
<term>Article synthèse</term>
<term>Mécanorécepteur</term>
<term>Récepteur sensoriel</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper we discuss how orientation is represented and transformed in the somatosensory system. Information about stimulus orientation plays an important role in sensory processing. In touch it provides critical information about how stimuli are positioned on the hand, which is important for grasping and lifting objects. It also provides important information about tactile shape. Psychophysical studies show that humans have a high capacity to discriminate the orientation of shapes and gratings indented into the finger pad. Further, these studies demonstrate that orientation discrimination is a reliable and stable method for assessing tactile spatial acuity. Neurophysiological studies suggest that orientation information is processed by the slowly adapting type I (SA1) afferent system. While orientation is poorly represented in the responses of individual afferent fibers, it is well represented in the population response properties of peripheral SA1 afferents and in the responses of central neurons in the primary (S1) and secondary (S2) somatosensory cortex. In S2, neurons with orientation selective and orientation non-selective responses tend to have large receptive fields that span multiple pads on multiple digits. Neurons in S2 that are orientation selective have similar tuning functions on different finger pads. These neurons may provide position-invariant responses or may be responsible for integrating features across hands, which is important for haptic object recognition of large shapes from the hand. Neurophysiological studies in trained animals show that the responses of about 85% of the neurons in S2 are affected by the animals focus of attention and that attention to the orientation of a bar modifies both the mean firing rate (i.e. gain) of neurons encoding orientation information and the degree of synchronous firing between pairs of neurons.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0166-4328</s0>
</fA01>
<fA02 i1="01">
<s0>BBREDI</s0>
</fA02>
<fA03 i2="1">
<s0>Behav. brain res.</s0>
</fA03>
<fA05>
<s2>135</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Representation of orientation in the somatosensory system</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Brain Mechanisms of Tactile Perception</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HSIAO (Steven S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LANE (John)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FITZGERALD (Paul)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>MOHAMMED (Abdul H.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>TERENIUS (Lars)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University</s1>
<s2>Baltimore, MD 21218</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Department of Neurotec and Center for Molecular Medicine, Karolinska Institutet</s1>
<s2>Stockholm</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>93-103</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18271</s2>
<s5>354000104957530130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>49 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0583868</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Behavioural brain research</s0>
</fA64>
<fA66 i1="01">
<s0>IRL</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper we discuss how orientation is represented and transformed in the somatosensory system. Information about stimulus orientation plays an important role in sensory processing. In touch it provides critical information about how stimuli are positioned on the hand, which is important for grasping and lifting objects. It also provides important information about tactile shape. Psychophysical studies show that humans have a high capacity to discriminate the orientation of shapes and gratings indented into the finger pad. Further, these studies demonstrate that orientation discrimination is a reliable and stable method for assessing tactile spatial acuity. Neurophysiological studies suggest that orientation information is processed by the slowly adapting type I (SA1) afferent system. While orientation is poorly represented in the responses of individual afferent fibers, it is well represented in the population response properties of peripheral SA1 afferents and in the responses of central neurons in the primary (S1) and secondary (S2) somatosensory cortex. In S2, neurons with orientation selective and orientation non-selective responses tend to have large receptive fields that span multiple pads on multiple digits. Neurons in S2 that are orientation selective have similar tuning functions on different finger pads. These neurons may provide position-invariant responses or may be responsible for integrating features across hands, which is important for haptic object recognition of large shapes from the hand. Neurophysiological studies in trained animals show that the responses of about 85% of the neurons in S2 are affected by the animals focus of attention and that attention to the orientation of a bar modifies both the mean firing rate (i.e. gain) of neurons encoding orientation information and the degree of synchronous firing between pairs of neurons.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A25F</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Cortex somatosensoriel</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Somatosensory cortex</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Corteza somatosensorial</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Orientation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Orientation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Orientación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Attention</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Attention</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Atención</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Champ récepteur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Receptive field</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Campo receptor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Seuil différentiel</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Differential threshold</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Umbral diferencial</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Discrimination stimulus</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Stimulus discrimination</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Discriminación estímulo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Fibre nerveuse</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Nerve fiber</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fibra nerviosa</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Article synthèse</s0>
<s5>57</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Review</s0>
<s5>57</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Artículo síntesis</s0>
<s5>57</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mécanorécepteur</s0>
<s5>60</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Mechanoreceptor</s0>
<s5>60</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mecanorreceptor</s0>
<s5>60</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Récepteur sensoriel</s0>
<s5>74</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Sensory receptor</s0>
<s5>74</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Receptor sensorial</s0>
<s5>74</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Voie somesthésique</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Somesthetic pathway</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Vía somestésica</s0>
<s5>20</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Encéphale</s0>
<s5>21</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Brain (vertebrata)</s0>
<s5>21</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Encéfalo</s0>
<s5>21</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Système nerveux central</s0>
<s5>22</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Central nervous system</s0>
<s5>22</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Sistema nervioso central</s0>
<s5>22</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Vigilance</s0>
<s5>26</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Vigilance</s0>
<s5>26</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Vigilancia</s0>
<s5>26</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Psychophysique</s0>
<s5>35</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Psychophysics</s0>
<s5>35</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Psicofísica</s0>
<s5>35</s5>
</fC07>
<fN21>
<s1>343</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 02-0583868 INIST</NO>
<ET>Representation of orientation in the somatosensory system</ET>
<AU>HSIAO (Steven S.); LANE (John); FITZGERALD (Paul); MOHAMMED (Abdul H.); TERENIUS (Lars)</AU>
<AF>Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University/Baltimore, MD 21218/Etats-Unis (1 aut., 2 aut., 3 aut.); Department of Neurotec and Center for Molecular Medicine, Karolinska Institutet/Stockholm/Suède (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Behavioural brain research; ISSN 0166-4328; Coden BBREDI; Irlande; Da. 2002; Vol. 135; No. 1-2; Pp. 93-103; Bibl. 49 ref.</SO>
<LA>Anglais</LA>
<EA>In this paper we discuss how orientation is represented and transformed in the somatosensory system. Information about stimulus orientation plays an important role in sensory processing. In touch it provides critical information about how stimuli are positioned on the hand, which is important for grasping and lifting objects. It also provides important information about tactile shape. Psychophysical studies show that humans have a high capacity to discriminate the orientation of shapes and gratings indented into the finger pad. Further, these studies demonstrate that orientation discrimination is a reliable and stable method for assessing tactile spatial acuity. Neurophysiological studies suggest that orientation information is processed by the slowly adapting type I (SA1) afferent system. While orientation is poorly represented in the responses of individual afferent fibers, it is well represented in the population response properties of peripheral SA1 afferents and in the responses of central neurons in the primary (S1) and secondary (S2) somatosensory cortex. In S2, neurons with orientation selective and orientation non-selective responses tend to have large receptive fields that span multiple pads on multiple digits. Neurons in S2 that are orientation selective have similar tuning functions on different finger pads. These neurons may provide position-invariant responses or may be responsible for integrating features across hands, which is important for haptic object recognition of large shapes from the hand. Neurophysiological studies in trained animals show that the responses of about 85% of the neurons in S2 are affected by the animals focus of attention and that attention to the orientation of a bar modifies both the mean firing rate (i.e. gain) of neurons encoding orientation information and the degree of synchronous firing between pairs of neurons.</EA>
<CC>002A25F</CC>
<FD>Cortex somatosensoriel; Orientation; Attention; Sensibilité tactile; Champ récepteur; Seuil différentiel; Discrimination stimulus; Fibre nerveuse; Article synthèse; Mécanorécepteur; Récepteur sensoriel</FD>
<FG>Voie somesthésique; Encéphale; Système nerveux central; Vigilance; Psychophysique</FG>
<ED>Somatosensory cortex; Orientation; Attention; Tactile sensitivity; Receptive field; Differential threshold; Stimulus discrimination; Nerve fiber; Review; Mechanoreceptor; Sensory receptor</ED>
<EG>Somesthetic pathway; Brain (vertebrata); Central nervous system; Vigilance; Psychophysics</EG>
<SD>Corteza somatosensorial; Orientación; Atención; Sensibilidad tactil; Campo receptor; Umbral diferencial; Discriminación estímulo; Fibra nerviosa; Artículo síntesis; Mecanorreceptor; Receptor sensorial</SD>
<LO>INIST-18271.354000104957530130</LO>
<ID>02-0583868</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001227 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001227 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:02-0583868
   |texte=   Representation of orientation in the somatosensory system
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024