Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments

Identifieur interne : 001225 ( PascalFrancis/Corpus ); précédent : 001224; suivant : 001226

Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments

Auteurs : M. C. Cavusoglu ; A. Sherman ; F. Tendick

Source :

RBID : Pascal:03-0000673

Descripteurs français

English descriptors

Abstract

In this letter, teleoperation controller design for haptic exploration and telemanipulation of soft environments is studied. First, a new measure for fidelity in teleoperation is introduced which quantifies the teleoperation system's ability to transmit changes in the compliance of the environment. This sensitivity function is appropriate for the application of telesurgery, where the ability to distinguish small changes in tissue compliance is essential for tasks such as detection of embedded vessels. The bilateral teleoperation controller design problem is then formulated in a task-based optimization framework as the optimization of this metric, with constraints on free-space tracking and robust stability of the system under environment and human operator uncertainties. The control design procedure is illustrated with a case study. The analysis is also used to evaluate the effectiveness of using a force sensor in a teleoperation system.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1042-296X
A02 01      @0 IRAUEZ
A03   1    @0 IEEE Trans Rob Autom
A05       @2 18
A06       @2 4
A08 01  1  ENG  @1 Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments
A11 01  1    @1 CAVUSOGLU (M. C.)
A11 02  1    @1 SHERMAN (A.)
A11 03  1    @1 TENDICK (F.)
A14 01      @1 Dept. of Elec. Eng. and Comp. Sci. Case Western Reserve University @2 Cleveland, OH 44106 @3 USA @Z 1 aut.
A20       @1 641-647
A21       @1 2002
A23 01      @0 ENG
A43 01      @1 INIST @2 21023
A44       @0 A100
A45       @0 25 Refs.
A47 01  1    @0 03-0000673
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE Transactions on Robotics and Automation
A66 01      @0 USA
C01 01    ENG  @0 In this letter, teleoperation controller design for haptic exploration and telemanipulation of soft environments is studied. First, a new measure for fidelity in teleoperation is introduced which quantifies the teleoperation system's ability to transmit changes in the compliance of the environment. This sensitivity function is appropriate for the application of telesurgery, where the ability to distinguish small changes in tissue compliance is essential for tasks such as detection of embedded vessels. The bilateral teleoperation controller design problem is then formulated in a task-based optimization framework as the optimization of this metric, with constraints on free-space tracking and robust stability of the system under environment and human operator uncertainties. The control design procedure is illustrated with a case study. The analysis is also used to evaluate the effectiveness of using a force sensor in a teleoperation system.
C02 01  X    @0 001D02D
C02 02  X    @0 001D12E05
C02 03  X    @0 001D03J03
C02 04  X    @0 001A02I01
C02 05  X    @0 001D01A
C02 06  X    @0 001D02D06
C03 01  1  ENG  @0 Bilateral control design @4 INC
C03 02  1  ENG  @0 Teleoperation controllers @4 INC
C03 03  1  ENG  @0 Haptic exploration @4 INC
C03 04  1  ENG  @0 Soft environment telemanipulation @4 INC
C03 05  1  ENG  @0 Sensitivity function @4 INC
C03 06  1  ENG  @0 Free space tracking @4 INC
C03 07  1  ENG  @0 Human operator uncertainties @4 INC
C03 08  1  FRE  @0 Théorie
C03 08  1  ENG  @0 Theory
C03 09  1  FRE  @0 Equipement télécommande
C03 09  1  ENG  @0 Telecontrol equipment
C03 10  1  FRE  @0 Interface haptique
C03 10  1  ENG  @0 Haptic interfaces
C03 11  1  FRE  @0 Analyse sensibilité
C03 11  1  ENG  @0 Sensitivity analysis
C03 12  1  FRE  @0 Evaluation fonction
C03 12  1  ENG  @0 Function evaluation
C03 13  1  FRE  @0 Optimisation
C03 13  1  ENG  @0 Optimization
C03 14  1  FRE  @0 Robustesse système commande
C03 14  1  ENG  @0 Robustness (control systems)
C03 15  1  FRE  @0 Stabilité système
C03 15  1  ENG  @0 System stability
C03 16  1  FRE  @0 Système incertain
C03 16  1  ENG  @0 Uncertain systems
C03 17  1  FRE  @0 Commande force
C03 17  1  ENG  @0 Force control
C03 18  1  FRE  @0 Capteur
C03 18  1  ENG  @0 Sensors
C03 19  1  FRE  @0 Synthèse système commande @3 P
C03 19  1  ENG  @0 Control system synthesis @3 P
C03 20  1  FRE  @0 Expérience
C03 20  1  ENG  @0 Experiments
N21       @1 001

Format Inist (serveur)

NO : PASCAL 03-0000673 EI
ET : Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments
AU : CAVUSOGLU (M. C.); SHERMAN (A.); TENDICK (F.)
AF : Dept. of Elec. Eng. and Comp. Sci. Case Western Reserve University/Cleveland, OH 44106/Etats-Unis (1 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE Transactions on Robotics and Automation; ISSN 1042-296X; Coden IRAUEZ; Etats-Unis; Da. 2002; Vol. 18; No. 4; Pp. 641-647; Bibl. 25 Refs.
LA : Anglais
EA : In this letter, teleoperation controller design for haptic exploration and telemanipulation of soft environments is studied. First, a new measure for fidelity in teleoperation is introduced which quantifies the teleoperation system's ability to transmit changes in the compliance of the environment. This sensitivity function is appropriate for the application of telesurgery, where the ability to distinguish small changes in tissue compliance is essential for tasks such as detection of embedded vessels. The bilateral teleoperation controller design problem is then formulated in a task-based optimization framework as the optimization of this metric, with constraints on free-space tracking and robust stability of the system under environment and human operator uncertainties. The control design procedure is illustrated with a case study. The analysis is also used to evaluate the effectiveness of using a force sensor in a teleoperation system.
CC : 001D02D; 001D12E05; 001D03J03; 001A02I01; 001D01A; 001D02D06
FD : Théorie; Equipement télécommande; Interface haptique; Analyse sensibilité; Evaluation fonction; Optimisation; Robustesse système commande; Stabilité système; Système incertain; Commande force; Capteur; Synthèse système commande; Expérience
ED : Bilateral control design; Teleoperation controllers; Haptic exploration; Soft environment telemanipulation; Sensitivity function; Free space tracking; Human operator uncertainties; Theory; Telecontrol equipment; Haptic interfaces; Sensitivity analysis; Function evaluation; Optimization; Robustness (control systems); System stability; Uncertain systems; Force control; Sensors; Control system synthesis; Experiments
LO : INIST-21023
ID : 03-0000673

Links to Exploration step

Pascal:03-0000673

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments</title>
<author>
<name sortKey="Cavusoglu, M C" sort="Cavusoglu, M C" uniqKey="Cavusoglu M" first="M. C." last="Cavusoglu">M. C. Cavusoglu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Dept. of Elec. Eng. and Comp. Sci. Case Western Reserve University</s1>
<s2>Cleveland, OH 44106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sherman, A" sort="Sherman, A" uniqKey="Sherman A" first="A." last="Sherman">A. Sherman</name>
</author>
<author>
<name sortKey="Tendick, F" sort="Tendick, F" uniqKey="Tendick F" first="F." last="Tendick">F. Tendick</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">03-0000673</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 03-0000673 EI</idno>
<idno type="RBID">Pascal:03-0000673</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001225</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments</title>
<author>
<name sortKey="Cavusoglu, M C" sort="Cavusoglu, M C" uniqKey="Cavusoglu M" first="M. C." last="Cavusoglu">M. C. Cavusoglu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Dept. of Elec. Eng. and Comp. Sci. Case Western Reserve University</s1>
<s2>Cleveland, OH 44106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sherman, A" sort="Sherman, A" uniqKey="Sherman A" first="A." last="Sherman">A. Sherman</name>
</author>
<author>
<name sortKey="Tendick, F" sort="Tendick, F" uniqKey="Tendick F" first="F." last="Tendick">F. Tendick</name>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE Transactions on Robotics and Automation</title>
<title level="j" type="abbreviated">IEEE Trans Rob Autom</title>
<idno type="ISSN">1042-296X</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE Transactions on Robotics and Automation</title>
<title level="j" type="abbreviated">IEEE Trans Rob Autom</title>
<idno type="ISSN">1042-296X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bilateral control design</term>
<term>Control system synthesis</term>
<term>Experiments</term>
<term>Force control</term>
<term>Free space tracking</term>
<term>Function evaluation</term>
<term>Haptic exploration</term>
<term>Haptic interfaces</term>
<term>Human operator uncertainties</term>
<term>Optimization</term>
<term>Robustness (control systems)</term>
<term>Sensitivity analysis</term>
<term>Sensitivity function</term>
<term>Sensors</term>
<term>Soft environment telemanipulation</term>
<term>System stability</term>
<term>Telecontrol equipment</term>
<term>Teleoperation controllers</term>
<term>Theory</term>
<term>Uncertain systems</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Théorie</term>
<term>Equipement télécommande</term>
<term>Interface haptique</term>
<term>Analyse sensibilité</term>
<term>Evaluation fonction</term>
<term>Optimisation</term>
<term>Robustesse système commande</term>
<term>Stabilité système</term>
<term>Système incertain</term>
<term>Commande force</term>
<term>Capteur</term>
<term>Synthèse système commande</term>
<term>Expérience</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this letter, teleoperation controller design for haptic exploration and telemanipulation of soft environments is studied. First, a new measure for fidelity in teleoperation is introduced which quantifies the teleoperation system's ability to transmit changes in the compliance of the environment. This sensitivity function is appropriate for the application of telesurgery, where the ability to distinguish small changes in tissue compliance is essential for tasks such as detection of embedded vessels. The bilateral teleoperation controller design problem is then formulated in a task-based optimization framework as the optimization of this metric, with constraints on free-space tracking and robust stability of the system under environment and human operator uncertainties. The control design procedure is illustrated with a case study. The analysis is also used to evaluate the effectiveness of using a force sensor in a teleoperation system.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1042-296X</s0>
</fA01>
<fA02 i1="01">
<s0>IRAUEZ</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE Trans Rob Autom</s0>
</fA03>
<fA05>
<s2>18</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CAVUSOGLU (M. C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHERMAN (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TENDICK (F.)</s1>
</fA11>
<fA14 i1="01">
<s1>Dept. of Elec. Eng. and Comp. Sci. Case Western Reserve University</s1>
<s2>Cleveland, OH 44106</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>641-647</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21023</s2>
</fA43>
<fA44>
<s0>A100</s0>
</fA44>
<fA45>
<s0>25 Refs.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0000673</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE Transactions on Robotics and Automation</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this letter, teleoperation controller design for haptic exploration and telemanipulation of soft environments is studied. First, a new measure for fidelity in teleoperation is introduced which quantifies the teleoperation system's ability to transmit changes in the compliance of the environment. This sensitivity function is appropriate for the application of telesurgery, where the ability to distinguish small changes in tissue compliance is essential for tasks such as detection of embedded vessels. The bilateral teleoperation controller design problem is then formulated in a task-based optimization framework as the optimization of this metric, with constraints on free-space tracking and robust stability of the system under environment and human operator uncertainties. The control design procedure is illustrated with a case study. The analysis is also used to evaluate the effectiveness of using a force sensor in a teleoperation system.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D12E05</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03J03</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001A02I01</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>001D01A</s0>
</fC02>
<fC02 i1="06" i2="X">
<s0>001D02D06</s0>
</fC02>
<fC03 i1="01" i2="1" l="ENG">
<s0>Bilateral control design</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="1" l="ENG">
<s0>Teleoperation controllers</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="1" l="ENG">
<s0>Haptic exploration</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="1" l="ENG">
<s0>Soft environment telemanipulation</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="1" l="ENG">
<s0>Sensitivity function</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="1" l="ENG">
<s0>Free space tracking</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="1" l="ENG">
<s0>Human operator uncertainties</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="1" l="FRE">
<s0>Théorie</s0>
</fC03>
<fC03 i1="08" i2="1" l="ENG">
<s0>Theory</s0>
</fC03>
<fC03 i1="09" i2="1" l="FRE">
<s0>Equipement télécommande</s0>
</fC03>
<fC03 i1="09" i2="1" l="ENG">
<s0>Telecontrol equipment</s0>
</fC03>
<fC03 i1="10" i2="1" l="FRE">
<s0>Interface haptique</s0>
</fC03>
<fC03 i1="10" i2="1" l="ENG">
<s0>Haptic interfaces</s0>
</fC03>
<fC03 i1="11" i2="1" l="FRE">
<s0>Analyse sensibilité</s0>
</fC03>
<fC03 i1="11" i2="1" l="ENG">
<s0>Sensitivity analysis</s0>
</fC03>
<fC03 i1="12" i2="1" l="FRE">
<s0>Evaluation fonction</s0>
</fC03>
<fC03 i1="12" i2="1" l="ENG">
<s0>Function evaluation</s0>
</fC03>
<fC03 i1="13" i2="1" l="FRE">
<s0>Optimisation</s0>
</fC03>
<fC03 i1="13" i2="1" l="ENG">
<s0>Optimization</s0>
</fC03>
<fC03 i1="14" i2="1" l="FRE">
<s0>Robustesse système commande</s0>
</fC03>
<fC03 i1="14" i2="1" l="ENG">
<s0>Robustness (control systems)</s0>
</fC03>
<fC03 i1="15" i2="1" l="FRE">
<s0>Stabilité système</s0>
</fC03>
<fC03 i1="15" i2="1" l="ENG">
<s0>System stability</s0>
</fC03>
<fC03 i1="16" i2="1" l="FRE">
<s0>Système incertain</s0>
</fC03>
<fC03 i1="16" i2="1" l="ENG">
<s0>Uncertain systems</s0>
</fC03>
<fC03 i1="17" i2="1" l="FRE">
<s0>Commande force</s0>
</fC03>
<fC03 i1="17" i2="1" l="ENG">
<s0>Force control</s0>
</fC03>
<fC03 i1="18" i2="1" l="FRE">
<s0>Capteur</s0>
</fC03>
<fC03 i1="18" i2="1" l="ENG">
<s0>Sensors</s0>
</fC03>
<fC03 i1="19" i2="1" l="FRE">
<s0>Synthèse système commande</s0>
<s3>P</s3>
</fC03>
<fC03 i1="19" i2="1" l="ENG">
<s0>Control system synthesis</s0>
<s3>P</s3>
</fC03>
<fC03 i1="20" i2="1" l="FRE">
<s0>Expérience</s0>
</fC03>
<fC03 i1="20" i2="1" l="ENG">
<s0>Experiments</s0>
</fC03>
<fN21>
<s1>001</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 03-0000673 EI</NO>
<ET>Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments</ET>
<AU>CAVUSOGLU (M. C.); SHERMAN (A.); TENDICK (F.)</AU>
<AF>Dept. of Elec. Eng. and Comp. Sci. Case Western Reserve University/Cleveland, OH 44106/Etats-Unis (1 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE Transactions on Robotics and Automation; ISSN 1042-296X; Coden IRAUEZ; Etats-Unis; Da. 2002; Vol. 18; No. 4; Pp. 641-647; Bibl. 25 Refs.</SO>
<LA>Anglais</LA>
<EA>In this letter, teleoperation controller design for haptic exploration and telemanipulation of soft environments is studied. First, a new measure for fidelity in teleoperation is introduced which quantifies the teleoperation system's ability to transmit changes in the compliance of the environment. This sensitivity function is appropriate for the application of telesurgery, where the ability to distinguish small changes in tissue compliance is essential for tasks such as detection of embedded vessels. The bilateral teleoperation controller design problem is then formulated in a task-based optimization framework as the optimization of this metric, with constraints on free-space tracking and robust stability of the system under environment and human operator uncertainties. The control design procedure is illustrated with a case study. The analysis is also used to evaluate the effectiveness of using a force sensor in a teleoperation system.</EA>
<CC>001D02D; 001D12E05; 001D03J03; 001A02I01; 001D01A; 001D02D06</CC>
<FD>Théorie; Equipement télécommande; Interface haptique; Analyse sensibilité; Evaluation fonction; Optimisation; Robustesse système commande; Stabilité système; Système incertain; Commande force; Capteur; Synthèse système commande; Expérience</FD>
<ED>Bilateral control design; Teleoperation controllers; Haptic exploration; Soft environment telemanipulation; Sensitivity function; Free space tracking; Human operator uncertainties; Theory; Telecontrol equipment; Haptic interfaces; Sensitivity analysis; Function evaluation; Optimization; Robustness (control systems); System stability; Uncertain systems; Force control; Sensors; Control system synthesis; Experiments</ED>
<LO>INIST-21023</LO>
<ID>03-0000673</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001225 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001225 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:03-0000673
   |texte=   Design of bilateral teleoperation controllers for haptic exploration  and telemanipulation of soft environments
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024