Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haptic control of a mobile robot: A user study

Identifieur interne : 001070 ( PascalFrancis/Corpus ); précédent : 001069; suivant : 001071

Haptic control of a mobile robot: A user study

Auteurs : Sangyoon Lee ; Gaurav S. Sukhatme ; Gerard Jounghyun Kim ; Chan-Mo Park

Source :

RBID : Pascal:04-0193965

Descripteurs français

English descriptors

Abstract

We address the problem of teleoperating a mobile robot using shared autonomy: an on-board controller performs obstacle avoidance while the operator uses the manipulandum of a haptic probe to designate the desired speed and rate of turn. Sensors on the robot are used to measure obstacle range information. We describe a strategy to convert such range information into forces, which are reflected to the operator's hand, via the haptic probe. This haptic information provides feedback to the operator in addition to imagery from a front-facing camera mounted on the mobile robot. Extensive experiments with a user population show that the added haptic feedback significantly improves operator performance in several ways (reduced collisions, increased minimum distance between the robot and obstacles) without a significant increase in navigation time.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A08 01  1  ENG  @1 Haptic control of a mobile robot: A user study
A09 01  1  ENG  @1 2002 IEEE/RSJ international conference on intelligent robots and systems : Lausanne, 30 September - 4 October 2002
A11 01  1    @1 LEE (Sangyoon)
A11 02  1    @1 SUKHATME (Gaurav S.)
A11 03  1    @1 JOUNGHYUN KIM (Gerard)
A11 04  1    @1 PARK (Chan-Mo)
A14 01      @1 Virtual Reality Laboratory, Dept. of Computer Science & Engineering, Pohang University of Science and Technology(POSTECH) @2 Pohang, Kyoungbuk, 790-784 @3 KOR @Z 1 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Robotic Embedded Systems Laboratory, Dept. of Computer Science, University of Southern California @2 Los Angeles, CA 90089-0781 @3 USA @Z 2 aut.
A18 01  1    @1 IEEE Robotics and Automation Society @3 USA @9 patr.
A18 02  1    @1 IEEE Industrial Elelctronics Society @3 USA @9 patr.
A18 03  1    @1 Robotics Society of Japan @3 JPN @9 patr.
A18 04  1    @1 Society of Instruments and Control Engineers @3 INC @9 patr.
A18 05  1    @1 INRIA Rhône-Alpes @2 Grenoble @3 FRA @9 patr.
A18 06  1    @1 EPFL @2 Lausanne @3 CHE @9 patr.
A20       @1 2867-2874
A21       @1 2002
A23 01      @0 ENG
A25 01      @1 IEEE @2 Piscataway NJ
A26 01      @0 0-7803-7398-7
A30 01  1  ENG  @1 IROS 2002 : international conference on intelligent robots and systems @3 Lausanne CHE @4 2002-09-30
A43 01      @1 INIST @2 Y 37951 @5 354000117764174670
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 18 ref.
A47 01  1    @0 04-0193965
A60       @1 C
A61       @0 A
A66 01      @0 USA
C01 01    ENG  @0 We address the problem of teleoperating a mobile robot using shared autonomy: an on-board controller performs obstacle avoidance while the operator uses the manipulandum of a haptic probe to designate the desired speed and rate of turn. Sensors on the robot are used to measure obstacle range information. We describe a strategy to convert such range information into forces, which are reflected to the operator's hand, via the haptic probe. This haptic information provides feedback to the operator in addition to imagery from a front-facing camera mounted on the mobile robot. Extensive experiments with a user population show that the added haptic feedback significantly improves operator performance in several ways (reduced collisions, increased minimum distance between the robot and obstacles) without a significant increase in navigation time.
C02 01  X    @0 001D02C03
C02 02  X    @0 001D02D11
C03 01  X  FRE  @0 Robot mobile @5 02
C03 01  X  ENG  @0 Moving robot @5 02
C03 01  X  SPA  @0 Robot móvil @5 02
C03 02  X  FRE  @0 Capteur mesure @5 03
C03 02  X  ENG  @0 Measurement sensor @5 03
C03 02  X  SPA  @0 Captador medida @5 03
C03 03  X  FRE  @0 Robotique @5 04
C03 03  X  ENG  @0 Robotics @5 04
C03 03  X  SPA  @0 Robótica @5 04
C03 04  X  FRE  @0 Utilisation information @5 05
C03 04  X  ENG  @0 Information use @5 05
C03 04  X  SPA  @0 Uso información @5 05
C03 05  X  FRE  @0 Mesure information @5 06
C03 05  X  ENG  @0 Information measure @5 06
C03 05  X  SPA  @0 Medida información @5 06
C03 06  X  FRE  @0 Circuit intégré @5 07
C03 06  X  ENG  @0 Integrated circuit @5 07
C03 06  X  SPA  @0 Circuito integrado @5 07
C03 07  X  FRE  @0 Interconnexion @5 08
C03 07  X  ENG  @0 Interconnection @5 08
C03 07  X  SPA  @0 Interconexión @5 08
C03 08  X  FRE  @0 Boucle réaction @5 09
C03 08  X  ENG  @0 Feedback @5 09
C03 08  X  SPA  @0 Retroalimentación @5 09
C03 09  X  FRE  @0 Rétroaction @5 10
C03 09  X  ENG  @0 Feedback regulation @5 10
C03 09  X  SPA  @0 Retroacción @5 10
C03 10  X  FRE  @0 Sensibilité tactile @5 11
C03 10  X  ENG  @0 Tactile sensitivity @5 11
C03 10  X  SPA  @0 Sensibilidad tactil @5 11
C03 11  X  FRE  @0 Prévention esquive collision @5 12
C03 11  X  ENG  @0 Collision avoidance @5 12
C03 11  X  SPA  @0 Prevención esquiva colisión @5 12
C03 12  X  FRE  @0 Obstacle @5 13
C03 12  X  ENG  @0 Obstacle @5 13
C03 12  X  SPA  @0 Obstáculo @5 13
C03 13  X  FRE  @0 Main @5 14
C03 13  X  ENG  @0 Hand @5 14
C03 13  X  SPA  @0 Mano @5 14
C03 14  X  FRE  @0 Appareil photographique @5 15
C03 14  X  ENG  @0 Camera @5 15
C03 14  X  SPA  @0 Máquina fotográfica @5 15
C03 15  X  FRE  @0 Distance minimale @5 16
C03 15  X  ENG  @0 Minimal distance @5 16
C03 15  X  SPA  @0 Distancia mínima @5 16
C03 16  X  FRE  @0 Augmentation @5 17
C03 16  X  ENG  @0 Increase @5 17
C03 16  X  SPA  @0 Aumentación @5 17
N21       @1 131
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 04-0193965 INIST
ET : Haptic control of a mobile robot: A user study
AU : LEE (Sangyoon); SUKHATME (Gaurav S.); JOUNGHYUN KIM (Gerard); PARK (Chan-Mo)
AF : Virtual Reality Laboratory, Dept. of Computer Science & Engineering, Pohang University of Science and Technology(POSTECH)/Pohang, Kyoungbuk, 790-784/Corée, République de (1 aut., 3 aut., 4 aut.); Robotic Embedded Systems Laboratory, Dept. of Computer Science, University of Southern California/Los Angeles, CA 90089-0781/Etats-Unis (2 aut.)
DT : Congrès; Niveau analytique
SO : IROS 2002 : international conference on intelligent robots and systems/2002-09-30/Lausanne CHE; Etats-Unis; Piscataway NJ: IEEE; Da. 2002; Pp. 2867-2874; ISBN 0-7803-7398-7
LA : Anglais
EA : We address the problem of teleoperating a mobile robot using shared autonomy: an on-board controller performs obstacle avoidance while the operator uses the manipulandum of a haptic probe to designate the desired speed and rate of turn. Sensors on the robot are used to measure obstacle range information. We describe a strategy to convert such range information into forces, which are reflected to the operator's hand, via the haptic probe. This haptic information provides feedback to the operator in addition to imagery from a front-facing camera mounted on the mobile robot. Extensive experiments with a user population show that the added haptic feedback significantly improves operator performance in several ways (reduced collisions, increased minimum distance between the robot and obstacles) without a significant increase in navigation time.
CC : 001D02C03; 001D02D11
FD : Robot mobile; Capteur mesure; Robotique; Utilisation information; Mesure information; Circuit intégré; Interconnexion; Boucle réaction; Rétroaction; Sensibilité tactile; Prévention esquive collision; Obstacle; Main; Appareil photographique; Distance minimale; Augmentation
ED : Moving robot; Measurement sensor; Robotics; Information use; Information measure; Integrated circuit; Interconnection; Feedback; Feedback regulation; Tactile sensitivity; Collision avoidance; Obstacle; Hand; Camera; Minimal distance; Increase
SD : Robot móvil; Captador medida; Robótica; Uso información; Medida información; Circuito integrado; Interconexión; Retroalimentación; Retroacción; Sensibilidad tactil; Prevención esquiva colisión; Obstáculo; Mano; Máquina fotográfica; Distancia mínima; Aumentación
LO : INIST-Y 37951.354000117764174670
ID : 04-0193965

Links to Exploration step

Pascal:04-0193965

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Haptic control of a mobile robot: A user study</title>
<author>
<name sortKey="Lee, Sangyoon" sort="Lee, Sangyoon" uniqKey="Lee S" first="Sangyoon" last="Lee">Sangyoon Lee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Virtual Reality Laboratory, Dept. of Computer Science & Engineering, Pohang University of Science and Technology(POSTECH)</s1>
<s2>Pohang, Kyoungbuk, 790-784</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sukhatme, Gaurav S" sort="Sukhatme, Gaurav S" uniqKey="Sukhatme G" first="Gaurav S." last="Sukhatme">Gaurav S. Sukhatme</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Robotic Embedded Systems Laboratory, Dept. of Computer Science, University of Southern California</s1>
<s2>Los Angeles, CA 90089-0781</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jounghyun Kim, Gerard" sort="Jounghyun Kim, Gerard" uniqKey="Jounghyun Kim G" first="Gerard" last="Jounghyun Kim">Gerard Jounghyun Kim</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Virtual Reality Laboratory, Dept. of Computer Science & Engineering, Pohang University of Science and Technology(POSTECH)</s1>
<s2>Pohang, Kyoungbuk, 790-784</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Park, Chan Mo" sort="Park, Chan Mo" uniqKey="Park C" first="Chan-Mo" last="Park">Chan-Mo Park</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Virtual Reality Laboratory, Dept. of Computer Science & Engineering, Pohang University of Science and Technology(POSTECH)</s1>
<s2>Pohang, Kyoungbuk, 790-784</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0193965</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 04-0193965 INIST</idno>
<idno type="RBID">Pascal:04-0193965</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001070</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Haptic control of a mobile robot: A user study</title>
<author>
<name sortKey="Lee, Sangyoon" sort="Lee, Sangyoon" uniqKey="Lee S" first="Sangyoon" last="Lee">Sangyoon Lee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Virtual Reality Laboratory, Dept. of Computer Science & Engineering, Pohang University of Science and Technology(POSTECH)</s1>
<s2>Pohang, Kyoungbuk, 790-784</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sukhatme, Gaurav S" sort="Sukhatme, Gaurav S" uniqKey="Sukhatme G" first="Gaurav S." last="Sukhatme">Gaurav S. Sukhatme</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Robotic Embedded Systems Laboratory, Dept. of Computer Science, University of Southern California</s1>
<s2>Los Angeles, CA 90089-0781</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jounghyun Kim, Gerard" sort="Jounghyun Kim, Gerard" uniqKey="Jounghyun Kim G" first="Gerard" last="Jounghyun Kim">Gerard Jounghyun Kim</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Virtual Reality Laboratory, Dept. of Computer Science & Engineering, Pohang University of Science and Technology(POSTECH)</s1>
<s2>Pohang, Kyoungbuk, 790-784</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Park, Chan Mo" sort="Park, Chan Mo" uniqKey="Park C" first="Chan-Mo" last="Park">Chan-Mo Park</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Virtual Reality Laboratory, Dept. of Computer Science & Engineering, Pohang University of Science and Technology(POSTECH)</s1>
<s2>Pohang, Kyoungbuk, 790-784</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Camera</term>
<term>Collision avoidance</term>
<term>Feedback</term>
<term>Feedback regulation</term>
<term>Hand</term>
<term>Increase</term>
<term>Information measure</term>
<term>Information use</term>
<term>Integrated circuit</term>
<term>Interconnection</term>
<term>Measurement sensor</term>
<term>Minimal distance</term>
<term>Moving robot</term>
<term>Obstacle</term>
<term>Robotics</term>
<term>Tactile sensitivity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Robot mobile</term>
<term>Capteur mesure</term>
<term>Robotique</term>
<term>Utilisation information</term>
<term>Mesure information</term>
<term>Circuit intégré</term>
<term>Interconnexion</term>
<term>Boucle réaction</term>
<term>Rétroaction</term>
<term>Sensibilité tactile</term>
<term>Prévention esquive collision</term>
<term>Obstacle</term>
<term>Main</term>
<term>Appareil photographique</term>
<term>Distance minimale</term>
<term>Augmentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We address the problem of teleoperating a mobile robot using shared autonomy: an on-board controller performs obstacle avoidance while the operator uses the manipulandum of a haptic probe to designate the desired speed and rate of turn. Sensors on the robot are used to measure obstacle range information. We describe a strategy to convert such range information into forces, which are reflected to the operator's hand, via the haptic probe. This haptic information provides feedback to the operator in addition to imagery from a front-facing camera mounted on the mobile robot. Extensive experiments with a user population show that the added haptic feedback significantly improves operator performance in several ways (reduced collisions, increased minimum distance between the robot and obstacles) without a significant increase in navigation time.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA08 i1="01" i2="1" l="ENG">
<s1>Haptic control of a mobile robot: A user study</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>2002 IEEE/RSJ international conference on intelligent robots and systems : Lausanne, 30 September - 4 October 2002</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>LEE (Sangyoon)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SUKHATME (Gaurav S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JOUNGHYUN KIM (Gerard)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PARK (Chan-Mo)</s1>
</fA11>
<fA14 i1="01">
<s1>Virtual Reality Laboratory, Dept. of Computer Science & Engineering, Pohang University of Science and Technology(POSTECH)</s1>
<s2>Pohang, Kyoungbuk, 790-784</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Robotic Embedded Systems Laboratory, Dept. of Computer Science, University of Southern California</s1>
<s2>Los Angeles, CA 90089-0781</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>IEEE Robotics and Automation Society</s1>
<s3>USA</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>IEEE Industrial Elelctronics Society</s1>
<s3>USA</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="03" i2="1">
<s1>Robotics Society of Japan</s1>
<s3>JPN</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="04" i2="1">
<s1>Society of Instruments and Control Engineers</s1>
<s3>INC</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="05" i2="1">
<s1>INRIA Rhône-Alpes</s1>
<s2>Grenoble</s2>
<s3>FRA</s3>
<s9>patr.</s9>
</fA18>
<fA18 i1="06" i2="1">
<s1>EPFL</s1>
<s2>Lausanne</s2>
<s3>CHE</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>2867-2874</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>IEEE</s1>
<s2>Piscataway NJ</s2>
</fA25>
<fA26 i1="01">
<s0>0-7803-7398-7</s0>
</fA26>
<fA30 i1="01" i2="1" l="ENG">
<s1>IROS 2002 : international conference on intelligent robots and systems</s1>
<s3>Lausanne CHE</s3>
<s4>2002-09-30</s4>
</fA30>
<fA43 i1="01">
<s1>INIST</s1>
<s2>Y 37951</s2>
<s5>354000117764174670</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0193965</s0>
</fA47>
<fA60>
<s1>C</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We address the problem of teleoperating a mobile robot using shared autonomy: an on-board controller performs obstacle avoidance while the operator uses the manipulandum of a haptic probe to designate the desired speed and rate of turn. Sensors on the robot are used to measure obstacle range information. We describe a strategy to convert such range information into forces, which are reflected to the operator's hand, via the haptic probe. This haptic information provides feedback to the operator in addition to imagery from a front-facing camera mounted on the mobile robot. Extensive experiments with a user population show that the added haptic feedback significantly improves operator performance in several ways (reduced collisions, increased minimum distance between the robot and obstacles) without a significant increase in navigation time.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02C03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Robot mobile</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Moving robot</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Robot móvil</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Capteur mesure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Measurement sensor</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Captador medida</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Utilisation information</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Information use</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Uso información</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mesure information</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Information measure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Medida información</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Circuit intégré</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Integrated circuit</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Circuito integrado</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Interconnexion</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Interconnection</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Interconexión</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Boucle réaction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Feedback</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Retroalimentación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Rétroaction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Feedback regulation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Retroacción</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Prévention esquive collision</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Collision avoidance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Prevención esquiva colisión</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Obstacle</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Obstacle</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Obstáculo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Main</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Hand</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Mano</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Appareil photographique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Camera</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Máquina fotográfica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Distance minimale</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Minimal distance</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Distancia mínima</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Augmentation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Increase</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Aumentación</s0>
<s5>17</s5>
</fC03>
<fN21>
<s1>131</s1>
</fN21>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0193965 INIST</NO>
<ET>Haptic control of a mobile robot: A user study</ET>
<AU>LEE (Sangyoon); SUKHATME (Gaurav S.); JOUNGHYUN KIM (Gerard); PARK (Chan-Mo)</AU>
<AF>Virtual Reality Laboratory, Dept. of Computer Science & Engineering, Pohang University of Science and Technology(POSTECH)/Pohang, Kyoungbuk, 790-784/Corée, République de (1 aut., 3 aut., 4 aut.); Robotic Embedded Systems Laboratory, Dept. of Computer Science, University of Southern California/Los Angeles, CA 90089-0781/Etats-Unis (2 aut.)</AF>
<DT>Congrès; Niveau analytique</DT>
<SO>IROS 2002 : international conference on intelligent robots and systems/2002-09-30/Lausanne CHE; Etats-Unis; Piscataway NJ: IEEE; Da. 2002; Pp. 2867-2874; ISBN 0-7803-7398-7</SO>
<LA>Anglais</LA>
<EA>We address the problem of teleoperating a mobile robot using shared autonomy: an on-board controller performs obstacle avoidance while the operator uses the manipulandum of a haptic probe to designate the desired speed and rate of turn. Sensors on the robot are used to measure obstacle range information. We describe a strategy to convert such range information into forces, which are reflected to the operator's hand, via the haptic probe. This haptic information provides feedback to the operator in addition to imagery from a front-facing camera mounted on the mobile robot. Extensive experiments with a user population show that the added haptic feedback significantly improves operator performance in several ways (reduced collisions, increased minimum distance between the robot and obstacles) without a significant increase in navigation time.</EA>
<CC>001D02C03; 001D02D11</CC>
<FD>Robot mobile; Capteur mesure; Robotique; Utilisation information; Mesure information; Circuit intégré; Interconnexion; Boucle réaction; Rétroaction; Sensibilité tactile; Prévention esquive collision; Obstacle; Main; Appareil photographique; Distance minimale; Augmentation</FD>
<ED>Moving robot; Measurement sensor; Robotics; Information use; Information measure; Integrated circuit; Interconnection; Feedback; Feedback regulation; Tactile sensitivity; Collision avoidance; Obstacle; Hand; Camera; Minimal distance; Increase</ED>
<SD>Robot móvil; Captador medida; Robótica; Uso información; Medida información; Circuito integrado; Interconexión; Retroalimentación; Retroacción; Sensibilidad tactil; Prevención esquiva colisión; Obstáculo; Mano; Máquina fotográfica; Distancia mínima; Aumentación</SD>
<LO>INIST-Y 37951.354000117764174670</LO>
<ID>04-0193965</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001070 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001070 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0193965
   |texte=   Haptic control of a mobile robot: A user study
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024