Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Forearm electromyographic changes with the use of a haptic force-feedback computer mouse

Identifieur interne : 000B86 ( PascalFrancis/Corpus ); précédent : 000B85; suivant : 000B87

Forearm electromyographic changes with the use of a haptic force-feedback computer mouse

Auteurs : Jack T. Dennerlein ; Maria-Helena J. Dimarino

Source :

RBID : Pascal:07-0115945

Descripteurs français

English descriptors

Abstract

Objective: To examine changes in biomechanical and motor control associated with a force-feedback computer mouse. Background: Haptic computer mice can improve the movement times for point-and-click tasks; however, changes in upper extremity biomechanics and motor control are unknown. Method: Eighteen people (ages 22-37 years) performed a point-and-click task 80 times using a force-feedback computer mouse across three different conditions: (a) no force feedback, emulating a conventional mouse; (b) a single attractive force field at the desired target that pulls the mouse to the center of the target; and (c) an attractive force field at the desired target as well as others between the two possible targets, distracting the user from the intended target. Cursor kinematics, wrist posture, and electromyographic (EMG) forearm muscle activity were recorded. Results: The point-and-click movements were 30% faster with the addition of a single force field and 3% faster with the addition of multiple force fields. The Fitts' law index of performance metrics improved from 2.9 bits/response to 4.1 bits/response for multiple attractive fields and to 6.0 bits/response for a single force field. For the distracting force fields, the cursor maximum velocities were over 50% faster. EMG amplitude values were largest for the distracting force fields. These data suggest that the operator uses increased muscle activity to accelerate the mouse through the distracting force fields. Conclusion: When implementing attractive haptic force fields, one needs to consider how to reduce these observed effects of potential distracting force fields. Application: Applications include human-computer interface design for pointing devices extensively used for the graphical user interface.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0018-7208
A02 01      @0 HUFAA6
A03   1    @0 Hum. factors
A05       @2 48
A06       @2 1
A08 01  1  ENG  @1 Forearm electromyographic changes with the use of a haptic force-feedback computer mouse
A11 01  1    @1 DENNERLEIN (Jack T.)
A11 02  1    @1 DIMARINO (Maria-Helena J.)
A14 01      @1 Harvard School of Public Health @2 Boston, Massachusetts @3 USA @Z 1 aut. @Z 2 aut.
A20       @1 130-141
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 2452 @5 354000156743780120
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 21 ref.
A47 01  1    @0 07-0115945
A60       @1 P
A61       @0 A
A64 01  1    @0 Human factors
A66 01      @0 USA
C01 01    ENG  @0 Objective: To examine changes in biomechanical and motor control associated with a force-feedback computer mouse. Background: Haptic computer mice can improve the movement times for point-and-click tasks; however, changes in upper extremity biomechanics and motor control are unknown. Method: Eighteen people (ages 22-37 years) performed a point-and-click task 80 times using a force-feedback computer mouse across three different conditions: (a) no force feedback, emulating a conventional mouse; (b) a single attractive force field at the desired target that pulls the mouse to the center of the target; and (c) an attractive force field at the desired target as well as others between the two possible targets, distracting the user from the intended target. Cursor kinematics, wrist posture, and electromyographic (EMG) forearm muscle activity were recorded. Results: The point-and-click movements were 30% faster with the addition of a single force field and 3% faster with the addition of multiple force fields. The Fitts' law index of performance metrics improved from 2.9 bits/response to 4.1 bits/response for multiple attractive fields and to 6.0 bits/response for a single force field. For the distracting force fields, the cursor maximum velocities were over 50% faster. EMG amplitude values were largest for the distracting force fields. These data suggest that the operator uses increased muscle activity to accelerate the mouse through the distracting force fields. Conclusion: When implementing attractive haptic force fields, one needs to consider how to reduce these observed effects of potential distracting force fields. Application: Applications include human-computer interface design for pointing devices extensively used for the graphical user interface.
C02 01  X    @0 002B29C01
C03 01  X  FRE  @0 Homme @5 01
C03 01  X  ENG  @0 Human @5 01
C03 01  X  SPA  @0 Hombre @5 01
C03 02  X  FRE  @0 Ergonomie @5 02
C03 02  X  ENG  @0 Ergonomics @5 02
C03 02  X  SPA  @0 Ergonomía @5 02
C03 03  X  FRE  @0 Souris (ordinateur) @5 03
C03 03  X  ENG  @0 Mouse (computer peripheral) @5 03
C03 03  X  SPA  @0 Raton (computador) @5 03
C03 04  X  FRE  @0 Equipement entrée sortie @5 04
C03 04  X  ENG  @0 Input output equipment @5 04
C03 04  X  SPA  @0 Equipo entrada salida @5 04
C03 05  X  FRE  @0 Matériel informatique @5 05
C03 05  X  ENG  @0 Computer hardware @5 05
C03 05  X  SPA  @0 Hardware @5 05
C03 06  X  FRE  @0 Avant bras @5 06
C03 06  X  ENG  @0 Forearm @5 06
C03 06  X  SPA  @0 Antebrazo @5 06
C03 07  X  FRE  @0 Electromyographie @5 07
C03 07  X  ENG  @0 Electromyography @5 07
C03 07  X  SPA  @0 Electromiografía @5 07
C03 08  X  FRE  @0 Biomécanique @5 08
C03 08  X  ENG  @0 Biomechanics @5 08
C03 08  X  SPA  @0 Biomecánica @5 08
C03 09  X  FRE  @0 Contrôle moteur @5 10
C03 09  X  ENG  @0 Motor control @5 10
C03 09  X  SPA  @0 Control motor @5 10
C03 10  X  FRE  @0 Boucle réaction @5 11
C03 10  X  ENG  @0 Feedback @5 11
C03 10  X  SPA  @0 Retroalimentación @5 11
C03 11  X  FRE  @0 Interface utilisateur @5 13
C03 11  X  ENG  @0 User interface @5 13
C03 11  X  SPA  @0 Interfase usuario @5 13
C03 12  X  FRE  @0 Relation homme machine @5 14
C03 12  X  ENG  @0 Man machine relation @5 14
C03 12  X  SPA  @0 Relación hombre máquina @5 14
C03 13  X  FRE  @0 Muscle strié @5 57
C03 13  X  ENG  @0 Striated muscle @5 57
C03 13  X  SPA  @0 Músculo estriado @5 57
C03 14  X  FRE  @0 Performance @5 58
C03 14  X  ENG  @0 Performance @5 58
C03 14  X  SPA  @0 Rendimiento @5 58
C03 15  X  FRE  @0 Tâche manuelle @5 60
C03 15  X  ENG  @0 Manual task @5 60
C03 15  X  SPA  @0 Tarea manual @5 60
C07 01  X  FRE  @0 Electrophysiologie @5 20
C07 01  X  ENG  @0 Electrophysiology @5 20
C07 01  X  SPA  @0 Electrofisiología @5 20
N21       @1 071

Format Inist (serveur)

NO : PASCAL 07-0115945 INIST
ET : Forearm electromyographic changes with the use of a haptic force-feedback computer mouse
AU : DENNERLEIN (Jack T.); DIMARINO (Maria-Helena J.)
AF : Harvard School of Public Health/Boston, Massachusetts/Etats-Unis (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : Human factors; ISSN 0018-7208; Coden HUFAA6; Etats-Unis; Da. 2006; Vol. 48; No. 1; Pp. 130-141; Bibl. 21 ref.
LA : Anglais
EA : Objective: To examine changes in biomechanical and motor control associated with a force-feedback computer mouse. Background: Haptic computer mice can improve the movement times for point-and-click tasks; however, changes in upper extremity biomechanics and motor control are unknown. Method: Eighteen people (ages 22-37 years) performed a point-and-click task 80 times using a force-feedback computer mouse across three different conditions: (a) no force feedback, emulating a conventional mouse; (b) a single attractive force field at the desired target that pulls the mouse to the center of the target; and (c) an attractive force field at the desired target as well as others between the two possible targets, distracting the user from the intended target. Cursor kinematics, wrist posture, and electromyographic (EMG) forearm muscle activity were recorded. Results: The point-and-click movements were 30% faster with the addition of a single force field and 3% faster with the addition of multiple force fields. The Fitts' law index of performance metrics improved from 2.9 bits/response to 4.1 bits/response for multiple attractive fields and to 6.0 bits/response for a single force field. For the distracting force fields, the cursor maximum velocities were over 50% faster. EMG amplitude values were largest for the distracting force fields. These data suggest that the operator uses increased muscle activity to accelerate the mouse through the distracting force fields. Conclusion: When implementing attractive haptic force fields, one needs to consider how to reduce these observed effects of potential distracting force fields. Application: Applications include human-computer interface design for pointing devices extensively used for the graphical user interface.
CC : 002B29C01
FD : Homme; Ergonomie; Souris (ordinateur); Equipement entrée sortie; Matériel informatique; Avant bras; Electromyographie; Biomécanique; Contrôle moteur; Boucle réaction; Interface utilisateur; Relation homme machine; Muscle strié; Performance; Tâche manuelle
FG : Electrophysiologie
ED : Human; Ergonomics; Mouse (computer peripheral); Input output equipment; Computer hardware; Forearm; Electromyography; Biomechanics; Motor control; Feedback; User interface; Man machine relation; Striated muscle; Performance; Manual task
EG : Electrophysiology
SD : Hombre; Ergonomía; Raton (computador); Equipo entrada salida; Hardware; Antebrazo; Electromiografía; Biomecánica; Control motor; Retroalimentación; Interfase usuario; Relación hombre máquina; Músculo estriado; Rendimiento; Tarea manual
LO : INIST-2452.354000156743780120
ID : 07-0115945

Links to Exploration step

Pascal:07-0115945

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Forearm electromyographic changes with the use of a haptic force-feedback computer mouse</title>
<author>
<name sortKey="Dennerlein, Jack T" sort="Dennerlein, Jack T" uniqKey="Dennerlein J" first="Jack T." last="Dennerlein">Jack T. Dennerlein</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Harvard School of Public Health</s1>
<s2>Boston, Massachusetts</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dimarino, Maria Helena J" sort="Dimarino, Maria Helena J" uniqKey="Dimarino M" first="Maria-Helena J." last="Dimarino">Maria-Helena J. Dimarino</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Harvard School of Public Health</s1>
<s2>Boston, Massachusetts</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0115945</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 07-0115945 INIST</idno>
<idno type="RBID">Pascal:07-0115945</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000B86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Forearm electromyographic changes with the use of a haptic force-feedback computer mouse</title>
<author>
<name sortKey="Dennerlein, Jack T" sort="Dennerlein, Jack T" uniqKey="Dennerlein J" first="Jack T." last="Dennerlein">Jack T. Dennerlein</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Harvard School of Public Health</s1>
<s2>Boston, Massachusetts</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dimarino, Maria Helena J" sort="Dimarino, Maria Helena J" uniqKey="Dimarino M" first="Maria-Helena J." last="Dimarino">Maria-Helena J. Dimarino</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Harvard School of Public Health</s1>
<s2>Boston, Massachusetts</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Human factors</title>
<title level="j" type="abbreviated">Hum. factors</title>
<idno type="ISSN">0018-7208</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Human factors</title>
<title level="j" type="abbreviated">Hum. factors</title>
<idno type="ISSN">0018-7208</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomechanics</term>
<term>Computer hardware</term>
<term>Electromyography</term>
<term>Ergonomics</term>
<term>Feedback</term>
<term>Forearm</term>
<term>Human</term>
<term>Input output equipment</term>
<term>Man machine relation</term>
<term>Manual task</term>
<term>Motor control</term>
<term>Mouse (computer peripheral)</term>
<term>Performance</term>
<term>Striated muscle</term>
<term>User interface</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Homme</term>
<term>Ergonomie</term>
<term>Souris (ordinateur)</term>
<term>Equipement entrée sortie</term>
<term>Matériel informatique</term>
<term>Avant bras</term>
<term>Electromyographie</term>
<term>Biomécanique</term>
<term>Contrôle moteur</term>
<term>Boucle réaction</term>
<term>Interface utilisateur</term>
<term>Relation homme machine</term>
<term>Muscle strié</term>
<term>Performance</term>
<term>Tâche manuelle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Objective: To examine changes in biomechanical and motor control associated with a force-feedback computer mouse. Background: Haptic computer mice can improve the movement times for point-and-click tasks; however, changes in upper extremity biomechanics and motor control are unknown. Method: Eighteen people (ages 22-37 years) performed a point-and-click task 80 times using a force-feedback computer mouse across three different conditions: (a) no force feedback, emulating a conventional mouse; (b) a single attractive force field at the desired target that pulls the mouse to the center of the target; and (c) an attractive force field at the desired target as well as others between the two possible targets, distracting the user from the intended target. Cursor kinematics, wrist posture, and electromyographic (EMG) forearm muscle activity were recorded. Results: The point-and-click movements were 30% faster with the addition of a single force field and 3% faster with the addition of multiple force fields. The Fitts' law index of performance metrics improved from 2.9 bits/response to 4.1 bits/response for multiple attractive fields and to 6.0 bits/response for a single force field. For the distracting force fields, the cursor maximum velocities were over 50% faster. EMG amplitude values were largest for the distracting force fields. These data suggest that the operator uses increased muscle activity to accelerate the mouse through the distracting force fields. Conclusion: When implementing attractive haptic force fields, one needs to consider how to reduce these observed effects of potential distracting force fields. Application: Applications include human-computer interface design for pointing devices extensively used for the graphical user interface.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-7208</s0>
</fA01>
<fA02 i1="01">
<s0>HUFAA6</s0>
</fA02>
<fA03 i2="1">
<s0>Hum. factors</s0>
</fA03>
<fA05>
<s2>48</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Forearm electromyographic changes with the use of a haptic force-feedback computer mouse</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DENNERLEIN (Jack T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DIMARINO (Maria-Helena J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Harvard School of Public Health</s1>
<s2>Boston, Massachusetts</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>130-141</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2452</s2>
<s5>354000156743780120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0115945</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Human factors</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Objective: To examine changes in biomechanical and motor control associated with a force-feedback computer mouse. Background: Haptic computer mice can improve the movement times for point-and-click tasks; however, changes in upper extremity biomechanics and motor control are unknown. Method: Eighteen people (ages 22-37 years) performed a point-and-click task 80 times using a force-feedback computer mouse across three different conditions: (a) no force feedback, emulating a conventional mouse; (b) a single attractive force field at the desired target that pulls the mouse to the center of the target; and (c) an attractive force field at the desired target as well as others between the two possible targets, distracting the user from the intended target. Cursor kinematics, wrist posture, and electromyographic (EMG) forearm muscle activity were recorded. Results: The point-and-click movements were 30% faster with the addition of a single force field and 3% faster with the addition of multiple force fields. The Fitts' law index of performance metrics improved from 2.9 bits/response to 4.1 bits/response for multiple attractive fields and to 6.0 bits/response for a single force field. For the distracting force fields, the cursor maximum velocities were over 50% faster. EMG amplitude values were largest for the distracting force fields. These data suggest that the operator uses increased muscle activity to accelerate the mouse through the distracting force fields. Conclusion: When implementing attractive haptic force fields, one needs to consider how to reduce these observed effects of potential distracting force fields. Application: Applications include human-computer interface design for pointing devices extensively used for the graphical user interface.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B29C01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Homme</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Human</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Ergonomie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Ergonomics</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Ergonomía</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Souris (ordinateur)</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Mouse (computer peripheral)</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Raton (computador)</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Equipement entrée sortie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Input output equipment</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Equipo entrada salida</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Matériel informatique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Computer hardware</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Hardware</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Avant bras</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Forearm</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Antebrazo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Electromyographie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Electromyography</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Electromiografía</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Biomécanique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Biomechanics</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Biomecánica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Contrôle moteur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Motor control</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Control motor</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Boucle réaction</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Feedback</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Retroalimentación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>User interface</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Relation homme machine</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Man machine relation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Relación hombre máquina</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Muscle strié</s0>
<s5>57</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Striated muscle</s0>
<s5>57</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Músculo estriado</s0>
<s5>57</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Performance</s0>
<s5>58</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Performance</s0>
<s5>58</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Rendimiento</s0>
<s5>58</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Tâche manuelle</s0>
<s5>60</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Manual task</s0>
<s5>60</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Tarea manual</s0>
<s5>60</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Electrophysiologie</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Electrophysiology</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Electrofisiología</s0>
<s5>20</s5>
</fC07>
<fN21>
<s1>071</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 07-0115945 INIST</NO>
<ET>Forearm electromyographic changes with the use of a haptic force-feedback computer mouse</ET>
<AU>DENNERLEIN (Jack T.); DIMARINO (Maria-Helena J.)</AU>
<AF>Harvard School of Public Health/Boston, Massachusetts/Etats-Unis (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Human factors; ISSN 0018-7208; Coden HUFAA6; Etats-Unis; Da. 2006; Vol. 48; No. 1; Pp. 130-141; Bibl. 21 ref.</SO>
<LA>Anglais</LA>
<EA>Objective: To examine changes in biomechanical and motor control associated with a force-feedback computer mouse. Background: Haptic computer mice can improve the movement times for point-and-click tasks; however, changes in upper extremity biomechanics and motor control are unknown. Method: Eighteen people (ages 22-37 years) performed a point-and-click task 80 times using a force-feedback computer mouse across three different conditions: (a) no force feedback, emulating a conventional mouse; (b) a single attractive force field at the desired target that pulls the mouse to the center of the target; and (c) an attractive force field at the desired target as well as others between the two possible targets, distracting the user from the intended target. Cursor kinematics, wrist posture, and electromyographic (EMG) forearm muscle activity were recorded. Results: The point-and-click movements were 30% faster with the addition of a single force field and 3% faster with the addition of multiple force fields. The Fitts' law index of performance metrics improved from 2.9 bits/response to 4.1 bits/response for multiple attractive fields and to 6.0 bits/response for a single force field. For the distracting force fields, the cursor maximum velocities were over 50% faster. EMG amplitude values were largest for the distracting force fields. These data suggest that the operator uses increased muscle activity to accelerate the mouse through the distracting force fields. Conclusion: When implementing attractive haptic force fields, one needs to consider how to reduce these observed effects of potential distracting force fields. Application: Applications include human-computer interface design for pointing devices extensively used for the graphical user interface.</EA>
<CC>002B29C01</CC>
<FD>Homme; Ergonomie; Souris (ordinateur); Equipement entrée sortie; Matériel informatique; Avant bras; Electromyographie; Biomécanique; Contrôle moteur; Boucle réaction; Interface utilisateur; Relation homme machine; Muscle strié; Performance; Tâche manuelle</FD>
<FG>Electrophysiologie</FG>
<ED>Human; Ergonomics; Mouse (computer peripheral); Input output equipment; Computer hardware; Forearm; Electromyography; Biomechanics; Motor control; Feedback; User interface; Man machine relation; Striated muscle; Performance; Manual task</ED>
<EG>Electrophysiology</EG>
<SD>Hombre; Ergonomía; Raton (computador); Equipo entrada salida; Hardware; Antebrazo; Electromiografía; Biomecánica; Control motor; Retroalimentación; Interfase usuario; Relación hombre máquina; Músculo estriado; Rendimiento; Tarea manual</SD>
<LO>INIST-2452.354000156743780120</LO>
<ID>07-0115945</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B86 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000B86 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0115945
   |texte=   Forearm electromyographic changes with the use of a haptic force-feedback computer mouse
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024