Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Research on the conductivity of a haptic sensor, especially with the sensor under extended conditions

Identifieur interne : 000680 ( PascalFrancis/Corpus ); précédent : 000679; suivant : 000681

Research on the conductivity of a haptic sensor, especially with the sensor under extended conditions

Auteurs : YAOYANG ZHENG ; Kunio Shimada

Source :

RBID : Pascal:10-0070677

Descripteurs français

English descriptors

Abstract

The present paper describes the application of magnetic compound fluid (MCF) rubber as a haptic sensor for use as a material for robot sensors, artificial skin, and so on. MCF rubber is one of several new composite materials utilizing the MCF magnetic responsive fluid developed by Shimada. By applying MCF to silicon oil rubber, we can make MCF rubber highly sensitive to temperature and electric conduction. By mixing Cu and Ni particles in the silicon oil rubber and then applying a strong magnetic field, we can produce magnetic clusters at high density. The clusters form a network, as confirmed by optical observation. The MCF rubber with small deformations can act as an effective sensor. We report herein several experiments in which changes in the MCF rubber's resistance were observed when the rubber was compressed and a deformation was generated. We then made a trial haptic sensor using the MCF conductive rubber and performed many experiments to observe changes in the electrical resistance of the sensor. The experimental results showed that the proposed sensor made with MCF conductive rubber is useful for sensing small amounts of pressure or small deformations. Sometimes, however, the sensor rubber will be extended when we apply this sensor to the finger of the robot or an elbow. In these cases, it is necessary to understand the changes in sensor's conductivity. We therefore carried out some experiments to demonstrate how, under tensile conditions, the sensor's conductivity changes to a small value easier than the sensor in free condition. The results show that the sensors became more sensitive to the same pressure under extended conditions. In the present paper, we first describe the new type of functional fluid MCF rubber and a new composite material based on this MCF fluid. We then explain the production method for MCF conductive rubber and its conductive algorithm. Finally, we report our results regarding the MCF sensitivity when the MCF rubber was pulled. These experiments show an improvement in the sensitivity of the MCF rubber in the extended state.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0277-786X
A02 01      @0 PSISDG
A03   1    @0 Proc. SPIE Int. Soc. Opt. Eng.
A05       @2 7375
A06       @3 p. 2
A08 01  1  ENG  @1 Research on the conductivity of a haptic sensor, especially with the sensor under extended conditions
A09 01  1  ENG  @1 ICEM 2008 : International Conference on Experimental Mechanics 2008
A11 01  1    @1 YAOYANG ZHENG
A11 02  1    @1 SHIMADA (Kunio)
A12 01  1    @1 HE (Xiaoyuan) @9 ed.
A12 02  1    @1 XIE (Huimin) @9 ed.
A12 03  1    @1 KANG (Yilan) @9 ed.
A14 01      @1 Faculty of Symbiotic Systems Science Fukushima University @2 1 Kanayakawa, Fukushima 960-1296 @3 JPN @Z 1 aut.
A14 02      @1 Faculty of Symbiotic Systems Science Fukushima University @2 1 Kanayakawa, Fukushima 960-1296 @3 JPN @Z 2 aut.
A18 01  1    @1 Chinese Society for Experimental Mechanics @3 CHN @9 org-cong.
A18 02  1    @1 Dong nan da xue @3 CHN @9 org-cong.
A18 03  1    @1 Asian Committee of Experimental Mechanics @3 INC @9 org-cong.
A18 04  1    @1 Zhongguo li xue xue hui @3 CHN @9 org-cong.
A18 05  1    @1 China. Jiao yu bu @3 CHN @9 org-cong.
A18 06  1    @1 SPIE @3 USA @9 org-cong.
A20       @2 73754I.1-73754I.7
A21       @1 2009
A23 01      @0 ENG
A25 01      @1 SPIE @2 Bellingham, Wash.
A26 01      @0 978-0-8194-7651-7
A26 02      @0 0-8194-7651-X
A43 01      @1 INIST @2 21760 @5 354000172988041610
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 12 ref.
A47 01  1    @0 10-0070677
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Proceedings of SPIE, the International Society for Optical Engineering
A66 01      @0 USA
C01 01    ENG  @0 The present paper describes the application of magnetic compound fluid (MCF) rubber as a haptic sensor for use as a material for robot sensors, artificial skin, and so on. MCF rubber is one of several new composite materials utilizing the MCF magnetic responsive fluid developed by Shimada. By applying MCF to silicon oil rubber, we can make MCF rubber highly sensitive to temperature and electric conduction. By mixing Cu and Ni particles in the silicon oil rubber and then applying a strong magnetic field, we can produce magnetic clusters at high density. The clusters form a network, as confirmed by optical observation. The MCF rubber with small deformations can act as an effective sensor. We report herein several experiments in which changes in the MCF rubber's resistance were observed when the rubber was compressed and a deformation was generated. We then made a trial haptic sensor using the MCF conductive rubber and performed many experiments to observe changes in the electrical resistance of the sensor. The experimental results showed that the proposed sensor made with MCF conductive rubber is useful for sensing small amounts of pressure or small deformations. Sometimes, however, the sensor rubber will be extended when we apply this sensor to the finger of the robot or an elbow. In these cases, it is necessary to understand the changes in sensor's conductivity. We therefore carried out some experiments to demonstrate how, under tensile conditions, the sensor's conductivity changes to a small value easier than the sensor in free condition. The results show that the sensors became more sensitive to the same pressure under extended conditions. In the present paper, we first describe the new type of functional fluid MCF rubber and a new composite material based on this MCF fluid. We then explain the production method for MCF conductive rubber and its conductive algorithm. Finally, we report our results regarding the MCF sensitivity when the MCF rubber was pulled. These experiments show an improvement in the sensitivity of the MCF rubber in the extended state.
C02 01  X    @0 001D02B04
C02 02  X    @0 001D02D11
C03 01  X  FRE  @0 Capteur mesure @5 06
C03 01  X  ENG  @0 Measurement sensor @5 06
C03 01  X  SPA  @0 Captador medida @5 06
C03 02  X  FRE  @0 Robotique @5 07
C03 02  X  ENG  @0 Robotics @5 07
C03 02  X  SPA  @0 Robótica @5 07
C03 03  X  FRE  @0 Sensibilité tactile @5 18
C03 03  X  ENG  @0 Tactile sensitivity @5 18
C03 03  X  SPA  @0 Sensibilidad tactil @5 18
C03 04  X  FRE  @0 Caoutchouc @5 19
C03 04  X  ENG  @0 Rubber @5 19
C03 04  X  SPA  @0 Caucho @5 19
C03 05  X  FRE  @0 Peau @5 20
C03 05  X  ENG  @0 Skin @5 20
C03 05  X  SPA  @0 Piel @5 20
C03 06  X  FRE  @0 Mélangeage @5 21
C03 06  X  ENG  @0 Mixing @5 21
C03 06  X  SPA  @0 Mezclado @5 21
C03 07  X  FRE  @0 Champ intense @5 22
C03 07  X  ENG  @0 High field @5 22
C03 07  X  SPA  @0 Campo intenso @5 22
C03 08  X  FRE  @0 Densité élevée @5 23
C03 08  X  ENG  @0 High density @5 23
C03 08  X  SPA  @0 Densidad elevada @5 23
C03 09  X  FRE  @0 Résistance électrique @5 24
C03 09  X  ENG  @0 Resistor @5 24
C03 09  X  SPA  @0 Resistencia eléctrica(componente) @5 24
C03 10  X  FRE  @0 Doigt @5 25
C03 10  X  ENG  @0 Finger @5 25
C03 10  X  SPA  @0 Dedo @5 25
N21       @1 046
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 International Conference on Experimental Mechanics @3 Nanjing Shi CHN @4 2008

Format Inist (serveur)

NO : PASCAL 10-0070677 INIST
ET : Research on the conductivity of a haptic sensor, especially with the sensor under extended conditions
AU : YAOYANG ZHENG; SHIMADA (Kunio); HE (Xiaoyuan); XIE (Huimin); KANG (Yilan)
AF : Faculty of Symbiotic Systems Science Fukushima University/1 Kanayakawa, Fukushima 960-1296/Japon (1 aut.); Faculty of Symbiotic Systems Science Fukushima University/1 Kanayakawa, Fukushima 960-1296/Japon (2 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Proceedings of SPIE, the International Society for Optical Engineering; ISSN 0277-786X; Coden PSISDG; Etats-Unis; Da. 2009; Vol. 7375; No. p. 2; 73754I.1-73754I.7; Bibl. 12 ref.
LA : Anglais
EA : The present paper describes the application of magnetic compound fluid (MCF) rubber as a haptic sensor for use as a material for robot sensors, artificial skin, and so on. MCF rubber is one of several new composite materials utilizing the MCF magnetic responsive fluid developed by Shimada. By applying MCF to silicon oil rubber, we can make MCF rubber highly sensitive to temperature and electric conduction. By mixing Cu and Ni particles in the silicon oil rubber and then applying a strong magnetic field, we can produce magnetic clusters at high density. The clusters form a network, as confirmed by optical observation. The MCF rubber with small deformations can act as an effective sensor. We report herein several experiments in which changes in the MCF rubber's resistance were observed when the rubber was compressed and a deformation was generated. We then made a trial haptic sensor using the MCF conductive rubber and performed many experiments to observe changes in the electrical resistance of the sensor. The experimental results showed that the proposed sensor made with MCF conductive rubber is useful for sensing small amounts of pressure or small deformations. Sometimes, however, the sensor rubber will be extended when we apply this sensor to the finger of the robot or an elbow. In these cases, it is necessary to understand the changes in sensor's conductivity. We therefore carried out some experiments to demonstrate how, under tensile conditions, the sensor's conductivity changes to a small value easier than the sensor in free condition. The results show that the sensors became more sensitive to the same pressure under extended conditions. In the present paper, we first describe the new type of functional fluid MCF rubber and a new composite material based on this MCF fluid. We then explain the production method for MCF conductive rubber and its conductive algorithm. Finally, we report our results regarding the MCF sensitivity when the MCF rubber was pulled. These experiments show an improvement in the sensitivity of the MCF rubber in the extended state.
CC : 001D02B04; 001D02D11
FD : Capteur mesure; Robotique; Sensibilité tactile; Caoutchouc; Peau; Mélangeage; Champ intense; Densité élevée; Résistance électrique; Doigt
ED : Measurement sensor; Robotics; Tactile sensitivity; Rubber; Skin; Mixing; High field; High density; Resistor; Finger
SD : Captador medida; Robótica; Sensibilidad tactil; Caucho; Piel; Mezclado; Campo intenso; Densidad elevada; Resistencia eléctrica(componente); Dedo
LO : INIST-21760.354000172988041610
ID : 10-0070677

Links to Exploration step

Pascal:10-0070677

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Research on the conductivity of a haptic sensor, especially with the sensor under extended conditions</title>
<author>
<name sortKey="Yaoyang Zheng" sort="Yaoyang Zheng" uniqKey="Yaoyang Zheng" last="Yaoyang Zheng">YAOYANG ZHENG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Faculty of Symbiotic Systems Science Fukushima University</s1>
<s2>1 Kanayakawa, Fukushima 960-1296</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Shimada, Kunio" sort="Shimada, Kunio" uniqKey="Shimada K" first="Kunio" last="Shimada">Kunio Shimada</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculty of Symbiotic Systems Science Fukushima University</s1>
<s2>1 Kanayakawa, Fukushima 960-1296</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0070677</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 10-0070677 INIST</idno>
<idno type="RBID">Pascal:10-0070677</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000680</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Research on the conductivity of a haptic sensor, especially with the sensor under extended conditions</title>
<author>
<name sortKey="Yaoyang Zheng" sort="Yaoyang Zheng" uniqKey="Yaoyang Zheng" last="Yaoyang Zheng">YAOYANG ZHENG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Faculty of Symbiotic Systems Science Fukushima University</s1>
<s2>1 Kanayakawa, Fukushima 960-1296</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Shimada, Kunio" sort="Shimada, Kunio" uniqKey="Shimada K" first="Kunio" last="Shimada">Kunio Shimada</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculty of Symbiotic Systems Science Fukushima University</s1>
<s2>1 Kanayakawa, Fukushima 960-1296</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<idno type="ISSN">0277-786X</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<idno type="ISSN">0277-786X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Finger</term>
<term>High density</term>
<term>High field</term>
<term>Measurement sensor</term>
<term>Mixing</term>
<term>Resistor</term>
<term>Robotics</term>
<term>Rubber</term>
<term>Skin</term>
<term>Tactile sensitivity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Capteur mesure</term>
<term>Robotique</term>
<term>Sensibilité tactile</term>
<term>Caoutchouc</term>
<term>Peau</term>
<term>Mélangeage</term>
<term>Champ intense</term>
<term>Densité élevée</term>
<term>Résistance électrique</term>
<term>Doigt</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The present paper describes the application of magnetic compound fluid (MCF) rubber as a haptic sensor for use as a material for robot sensors, artificial skin, and so on. MCF rubber is one of several new composite materials utilizing the MCF magnetic responsive fluid developed by Shimada. By applying MCF to silicon oil rubber, we can make MCF rubber highly sensitive to temperature and electric conduction. By mixing Cu and Ni particles in the silicon oil rubber and then applying a strong magnetic field, we can produce magnetic clusters at high density. The clusters form a network, as confirmed by optical observation. The MCF rubber with small deformations can act as an effective sensor. We report herein several experiments in which changes in the MCF rubber's resistance were observed when the rubber was compressed and a deformation was generated. We then made a trial haptic sensor using the MCF conductive rubber and performed many experiments to observe changes in the electrical resistance of the sensor. The experimental results showed that the proposed sensor made with MCF conductive rubber is useful for sensing small amounts of pressure or small deformations. Sometimes, however, the sensor rubber will be extended when we apply this sensor to the finger of the robot or an elbow. In these cases, it is necessary to understand the changes in sensor's conductivity. We therefore carried out some experiments to demonstrate how, under tensile conditions, the sensor's conductivity changes to a small value easier than the sensor in free condition. The results show that the sensors became more sensitive to the same pressure under extended conditions. In the present paper, we first describe the new type of functional fluid MCF rubber and a new composite material based on this MCF fluid. We then explain the production method for MCF conductive rubber and its conductive algorithm. Finally, we report our results regarding the MCF sensitivity when the MCF rubber was pulled. These experiments show an improvement in the sensitivity of the MCF rubber in the extended state.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7375</s2>
</fA05>
<fA06>
<s3>p. 2</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Research on the conductivity of a haptic sensor, especially with the sensor under extended conditions</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>ICEM 2008 : International Conference on Experimental Mechanics 2008</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>YAOYANG ZHENG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHIMADA (Kunio)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>HE (Xiaoyuan)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>XIE (Huimin)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>KANG (Yilan)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Faculty of Symbiotic Systems Science Fukushima University</s1>
<s2>1 Kanayakawa, Fukushima 960-1296</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Faculty of Symbiotic Systems Science Fukushima University</s1>
<s2>1 Kanayakawa, Fukushima 960-1296</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>Chinese Society for Experimental Mechanics</s1>
<s3>CHN</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>Dong nan da xue</s1>
<s3>CHN</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="03" i2="1">
<s1>Asian Committee of Experimental Mechanics</s1>
<s3>INC</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="04" i2="1">
<s1>Zhongguo li xue xue hui</s1>
<s3>CHN</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="05" i2="1">
<s1>China. Jiao yu bu</s1>
<s3>CHN</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="06" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>73754I.1-73754I.7</s2>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-7651-7</s0>
</fA26>
<fA26 i1="02">
<s0>0-8194-7651-X</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000172988041610</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>12 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0070677</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The present paper describes the application of magnetic compound fluid (MCF) rubber as a haptic sensor for use as a material for robot sensors, artificial skin, and so on. MCF rubber is one of several new composite materials utilizing the MCF magnetic responsive fluid developed by Shimada. By applying MCF to silicon oil rubber, we can make MCF rubber highly sensitive to temperature and electric conduction. By mixing Cu and Ni particles in the silicon oil rubber and then applying a strong magnetic field, we can produce magnetic clusters at high density. The clusters form a network, as confirmed by optical observation. The MCF rubber with small deformations can act as an effective sensor. We report herein several experiments in which changes in the MCF rubber's resistance were observed when the rubber was compressed and a deformation was generated. We then made a trial haptic sensor using the MCF conductive rubber and performed many experiments to observe changes in the electrical resistance of the sensor. The experimental results showed that the proposed sensor made with MCF conductive rubber is useful for sensing small amounts of pressure or small deformations. Sometimes, however, the sensor rubber will be extended when we apply this sensor to the finger of the robot or an elbow. In these cases, it is necessary to understand the changes in sensor's conductivity. We therefore carried out some experiments to demonstrate how, under tensile conditions, the sensor's conductivity changes to a small value easier than the sensor in free condition. The results show that the sensors became more sensitive to the same pressure under extended conditions. In the present paper, we first describe the new type of functional fluid MCF rubber and a new composite material based on this MCF fluid. We then explain the production method for MCF conductive rubber and its conductive algorithm. Finally, we report our results regarding the MCF sensitivity when the MCF rubber was pulled. These experiments show an improvement in the sensitivity of the MCF rubber in the extended state.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Capteur mesure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Measurement sensor</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Captador medida</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>18</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>18</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>18</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Caoutchouc</s0>
<s5>19</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Rubber</s0>
<s5>19</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Caucho</s0>
<s5>19</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Peau</s0>
<s5>20</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Skin</s0>
<s5>20</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Piel</s0>
<s5>20</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Mélangeage</s0>
<s5>21</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Mixing</s0>
<s5>21</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Mezclado</s0>
<s5>21</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Champ intense</s0>
<s5>22</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>High field</s0>
<s5>22</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Campo intenso</s0>
<s5>22</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Densité élevée</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>High density</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Densidad elevada</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Résistance électrique</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Resistor</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Resistencia eléctrica(componente)</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Doigt</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Finger</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Dedo</s0>
<s5>25</s5>
</fC03>
<fN21>
<s1>046</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Experimental Mechanics</s1>
<s3>Nanjing Shi CHN</s3>
<s4>2008</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 10-0070677 INIST</NO>
<ET>Research on the conductivity of a haptic sensor, especially with the sensor under extended conditions</ET>
<AU>YAOYANG ZHENG; SHIMADA (Kunio); HE (Xiaoyuan); XIE (Huimin); KANG (Yilan)</AU>
<AF>Faculty of Symbiotic Systems Science Fukushima University/1 Kanayakawa, Fukushima 960-1296/Japon (1 aut.); Faculty of Symbiotic Systems Science Fukushima University/1 Kanayakawa, Fukushima 960-1296/Japon (2 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Proceedings of SPIE, the International Society for Optical Engineering; ISSN 0277-786X; Coden PSISDG; Etats-Unis; Da. 2009; Vol. 7375; No. p. 2; 73754I.1-73754I.7; Bibl. 12 ref.</SO>
<LA>Anglais</LA>
<EA>The present paper describes the application of magnetic compound fluid (MCF) rubber as a haptic sensor for use as a material for robot sensors, artificial skin, and so on. MCF rubber is one of several new composite materials utilizing the MCF magnetic responsive fluid developed by Shimada. By applying MCF to silicon oil rubber, we can make MCF rubber highly sensitive to temperature and electric conduction. By mixing Cu and Ni particles in the silicon oil rubber and then applying a strong magnetic field, we can produce magnetic clusters at high density. The clusters form a network, as confirmed by optical observation. The MCF rubber with small deformations can act as an effective sensor. We report herein several experiments in which changes in the MCF rubber's resistance were observed when the rubber was compressed and a deformation was generated. We then made a trial haptic sensor using the MCF conductive rubber and performed many experiments to observe changes in the electrical resistance of the sensor. The experimental results showed that the proposed sensor made with MCF conductive rubber is useful for sensing small amounts of pressure or small deformations. Sometimes, however, the sensor rubber will be extended when we apply this sensor to the finger of the robot or an elbow. In these cases, it is necessary to understand the changes in sensor's conductivity. We therefore carried out some experiments to demonstrate how, under tensile conditions, the sensor's conductivity changes to a small value easier than the sensor in free condition. The results show that the sensors became more sensitive to the same pressure under extended conditions. In the present paper, we first describe the new type of functional fluid MCF rubber and a new composite material based on this MCF fluid. We then explain the production method for MCF conductive rubber and its conductive algorithm. Finally, we report our results regarding the MCF sensitivity when the MCF rubber was pulled. These experiments show an improvement in the sensitivity of the MCF rubber in the extended state.</EA>
<CC>001D02B04; 001D02D11</CC>
<FD>Capteur mesure; Robotique; Sensibilité tactile; Caoutchouc; Peau; Mélangeage; Champ intense; Densité élevée; Résistance électrique; Doigt</FD>
<ED>Measurement sensor; Robotics; Tactile sensitivity; Rubber; Skin; Mixing; High field; High density; Resistor; Finger</ED>
<SD>Captador medida; Robótica; Sensibilidad tactil; Caucho; Piel; Mezclado; Campo intenso; Densidad elevada; Resistencia eléctrica(componente); Dedo</SD>
<LO>INIST-21760.354000172988041610</LO>
<ID>10-0070677</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000680 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000680 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0070677
   |texte=   Research on the conductivity of a haptic sensor, especially with the sensor under extended conditions
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024