Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Learning Retention of Thoracic Pedicle Screw Placement Using a High-Resolution Augmented Reality Simulator With Haptic Feedback

Identifieur interne : 000458 ( PascalFrancis/Corpus ); précédent : 000457; suivant : 000459

Learning Retention of Thoracic Pedicle Screw Placement Using a High-Resolution Augmented Reality Simulator With Haptic Feedback

Auteurs : Cristian J. Luciano ; P. Pat Banerjee ; Brad Bellotte ; G. Michael ; Michael Jr Lemole ; Fady T. Charbel ; Ben Roitberg

Source :

RBID : Pascal:11-0381804

Descripteurs français

English descriptors

Abstract

BACKGROUND: We evaluated the use of a part-task simulator with 3D and haptic feedback as a training tool for a common neurosurgical procedure - placement of thoracic pedicle screws. OBJECTIVE: To evaluate the learning retention of thoracic pedicle screw placement on a high-performance augmented reality and haptic technology workstation. METHODS: Fifty-one fellows and residents performed thoracic pedicle screw placement on the simulator. The virtual screws were drilled into a virtual patient's thoracic spine derived from a computed tomography data set of a real patient. RESULTS: With a 12.5% failure rate, a 2-proportion ztest yielded P=.08. For performance accuracy, an aggregate Euclidean distance deviation from entry landmark on the pedicle and a similar deviation from the target landmark in the vertebral body yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the practice to the test sessions, and the alternative hypothesis assumes an improvement. CONCLUSION: The performance accuracy on the simulator was comparable to the accuracy reported in literature on recent retrospective evaluation of such placements. The failure rates indicated a minor drop from practice to test sessions, and also indicated a trend (P = .08) toward learning retention resulting in improvement from practice to test sessions. The performance accuracy showed a 15% mean score improvement and more than a 50% reduction in standard deviation from practice to test. It showed evidence (P = .04) of performance accuracy improvement from practice to test session.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-396X
A02 01      @0 NRSRDY
A03   1    @0 Neurosurgery
A05       @2 69
A06       @2 3 @3 SUP
A08 01  1  ENG  @1 Learning Retention of Thoracic Pedicle Screw Placement Using a High-Resolution Augmented Reality Simulator With Haptic Feedback
A11 01  1    @1 LUCIANO (Cristian J.)
A11 02  1    @1 BANERJEE (P. Pat)
A11 03  1    @1 BELLOTTE (Brad)
A11 04  1    @1 MICHAEL (G.)
A11 05  1    @1 LEMOLE (Michael JR)
A11 06  1    @1 CHARBEL (Fady T.)
A11 07  1    @1 ROITBERG (Ben)
A14 01      @1 Department of Mechanical and Industrial Engineering, College of Engineering, University of Illinois at Chicago @2 Chicago, Illinois @3 USA @Z 1 aut. @Z 2 aut.
A14 02      @1 Department of Computer Science, College of Engineering, University of Illinois at Chicago @2 Chicago, Illinois @3 USA @Z 1 aut. @Z 2 aut.
A14 03      @1 Department of Bioengineering, College of Engineering, University of Illinois at Chicago @2 Chicago, Illinois @3 USA @Z 2 aut.
A14 04      @1 Department of Neurosurgery, Allegheny General Hospital @2 Pittsburgh, Pennsylvania @3 USA @Z 3 aut. @Z 4 aut.
A14 05      @1 Division of Neurosurgery, University of Arizona @2 Tucson, Arizona @3 USA @Z 5 aut.
A14 06      @1 Department of Neurosurgery, University of Illinois at Chicago @2 Chicago, Illinois @3 USA @Z 6 aut.
A14 07      @1 Division of Neurosurgery, University of Chicago @2 Chicago, Illinois @3 USA @Z 7 aut.
A20       @1 14-19
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 18396 @5 354000500133000030
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 3 ref.
A47 01  1    @0 11-0381804
A60       @1 P
A61       @0 A
A64 01  1    @0 Neurosurgery
A66 01      @0 USA
C01 01    ENG  @0 BACKGROUND: We evaluated the use of a part-task simulator with 3D and haptic feedback as a training tool for a common neurosurgical procedure - placement of thoracic pedicle screws. OBJECTIVE: To evaluate the learning retention of thoracic pedicle screw placement on a high-performance augmented reality and haptic technology workstation. METHODS: Fifty-one fellows and residents performed thoracic pedicle screw placement on the simulator. The virtual screws were drilled into a virtual patient's thoracic spine derived from a computed tomography data set of a real patient. RESULTS: With a 12.5% failure rate, a 2-proportion ztest yielded P=.08. For performance accuracy, an aggregate Euclidean distance deviation from entry landmark on the pedicle and a similar deviation from the target landmark in the vertebral body yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the practice to the test sessions, and the alternative hypothesis assumes an improvement. CONCLUSION: The performance accuracy on the simulator was comparable to the accuracy reported in literature on recent retrospective evaluation of such placements. The failure rates indicated a minor drop from practice to test sessions, and also indicated a trend (P = .08) toward learning retention resulting in improvement from practice to test sessions. The performance accuracy showed a 15% mean score improvement and more than a 50% reduction in standard deviation from practice to test. It showed evidence (P = .04) of performance accuracy improvement from practice to test session.
C02 01  X    @0 002B25J
C03 01  X  FRE  @0 Pathologie du système nerveux @5 01
C03 01  X  ENG  @0 Nervous system diseases @5 01
C03 01  X  SPA  @0 Sistema nervioso patología @5 01
C03 02  X  FRE  @0 Apprentissage @5 09
C03 02  X  ENG  @0 Learning @5 09
C03 02  X  SPA  @0 Aprendizaje @5 09
C03 03  X  FRE  @0 Vis @5 10
C03 03  X  ENG  @0 Screw @5 10
C03 03  X  SPA  @0 Tornillo @5 10
C03 04  X  FRE  @0 Haute résolution @5 11
C03 04  X  ENG  @0 High resolution @5 11
C03 04  X  SPA  @0 Alta resolucion @5 11
C03 05  X  FRE  @0 Réalité augmentée @5 12
C03 05  X  ENG  @0 Augmented reality @5 12
C03 05  X  SPA  @0 Realidad aumentada @5 12
C03 06  X  FRE  @0 Simulateur @5 13
C03 06  X  ENG  @0 Simulator @5 13
C03 06  X  SPA  @0 Simulador @5 13
C03 07  X  FRE  @0 Boucle réaction @5 14
C03 07  X  ENG  @0 Feedback @5 14
C03 07  X  SPA  @0 Retroalimentación @5 14
C03 08  X  FRE  @0 Chirurgie @5 15
C03 08  X  ENG  @0 Surgery @5 15
C03 08  X  SPA  @0 Cirugía @5 15
C03 09  X  FRE  @0 Simulation @5 17
C03 09  X  ENG  @0 Simulation @5 17
C03 09  X  SPA  @0 Simulación @5 17
C03 10  X  FRE  @0 Réalité virtuelle @5 18
C03 10  X  ENG  @0 Virtual reality @5 18
C03 10  X  SPA  @0 Realidad virtual @5 18
N21       @1 262
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0381804 INIST
ET : Learning Retention of Thoracic Pedicle Screw Placement Using a High-Resolution Augmented Reality Simulator With Haptic Feedback
AU : LUCIANO (Cristian J.); BANERJEE (P. Pat); BELLOTTE (Brad); MICHAEL (G.); LEMOLE (Michael JR); CHARBEL (Fady T.); ROITBERG (Ben)
AF : Department of Mechanical and Industrial Engineering, College of Engineering, University of Illinois at Chicago/Chicago, Illinois/Etats-Unis (1 aut., 2 aut.); Department of Computer Science, College of Engineering, University of Illinois at Chicago/Chicago, Illinois/Etats-Unis (1 aut., 2 aut.); Department of Bioengineering, College of Engineering, University of Illinois at Chicago/Chicago, Illinois/Etats-Unis (2 aut.); Department of Neurosurgery, Allegheny General Hospital/Pittsburgh, Pennsylvania/Etats-Unis (3 aut., 4 aut.); Division of Neurosurgery, University of Arizona/Tucson, Arizona/Etats-Unis (5 aut.); Department of Neurosurgery, University of Illinois at Chicago/Chicago, Illinois/Etats-Unis (6 aut.); Division of Neurosurgery, University of Chicago/Chicago, Illinois/Etats-Unis (7 aut.)
DT : Publication en série; Niveau analytique
SO : Neurosurgery; ISSN 0148-396X; Coden NRSRDY; Etats-Unis; Da. 2011; Vol. 69; No. 3 SUP; Pp. 14-19; Bibl. 3 ref.
LA : Anglais
EA : BACKGROUND: We evaluated the use of a part-task simulator with 3D and haptic feedback as a training tool for a common neurosurgical procedure - placement of thoracic pedicle screws. OBJECTIVE: To evaluate the learning retention of thoracic pedicle screw placement on a high-performance augmented reality and haptic technology workstation. METHODS: Fifty-one fellows and residents performed thoracic pedicle screw placement on the simulator. The virtual screws were drilled into a virtual patient's thoracic spine derived from a computed tomography data set of a real patient. RESULTS: With a 12.5% failure rate, a 2-proportion ztest yielded P=.08. For performance accuracy, an aggregate Euclidean distance deviation from entry landmark on the pedicle and a similar deviation from the target landmark in the vertebral body yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the practice to the test sessions, and the alternative hypothesis assumes an improvement. CONCLUSION: The performance accuracy on the simulator was comparable to the accuracy reported in literature on recent retrospective evaluation of such placements. The failure rates indicated a minor drop from practice to test sessions, and also indicated a trend (P = .08) toward learning retention resulting in improvement from practice to test sessions. The performance accuracy showed a 15% mean score improvement and more than a 50% reduction in standard deviation from practice to test. It showed evidence (P = .04) of performance accuracy improvement from practice to test session.
CC : 002B25J
FD : Pathologie du système nerveux; Apprentissage; Vis; Haute résolution; Réalité augmentée; Simulateur; Boucle réaction; Chirurgie; Simulation; Réalité virtuelle
ED : Nervous system diseases; Learning; Screw; High resolution; Augmented reality; Simulator; Feedback; Surgery; Simulation; Virtual reality
SD : Sistema nervioso patología; Aprendizaje; Tornillo; Alta resolucion; Realidad aumentada; Simulador; Retroalimentación; Cirugía; Simulación; Realidad virtual
LO : INIST-18396.354000500133000030
ID : 11-0381804

Links to Exploration step

Pascal:11-0381804

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Learning Retention of Thoracic Pedicle Screw Placement Using a High-Resolution Augmented Reality Simulator With Haptic Feedback</title>
<author>
<name sortKey="Luciano, Cristian J" sort="Luciano, Cristian J" uniqKey="Luciano C" first="Cristian J." last="Luciano">Cristian J. Luciano</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical and Industrial Engineering, College of Engineering, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Computer Science, College of Engineering, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Banerjee, P Pat" sort="Banerjee, P Pat" uniqKey="Banerjee P" first="P. Pat" last="Banerjee">P. Pat Banerjee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical and Industrial Engineering, College of Engineering, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Computer Science, College of Engineering, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Bioengineering, College of Engineering, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bellotte, Brad" sort="Bellotte, Brad" uniqKey="Bellotte B" first="Brad" last="Bellotte">Brad Bellotte</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Neurosurgery, Allegheny General Hospital</s1>
<s2>Pittsburgh, Pennsylvania</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Michael, G" sort="Michael, G" uniqKey="Michael G" first="G." last="Michael">G. Michael</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Neurosurgery, Allegheny General Hospital</s1>
<s2>Pittsburgh, Pennsylvania</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lemole, Michael Jr" sort="Lemole, Michael Jr" uniqKey="Lemole M" first="Michael Jr" last="Lemole">Michael Jr Lemole</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Division of Neurosurgery, University of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Charbel, Fady T" sort="Charbel, Fady T" uniqKey="Charbel F" first="Fady T." last="Charbel">Fady T. Charbel</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Department of Neurosurgery, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Roitberg, Ben" sort="Roitberg, Ben" uniqKey="Roitberg B" first="Ben" last="Roitberg">Ben Roitberg</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Division of Neurosurgery, University of Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0381804</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0381804 INIST</idno>
<idno type="RBID">Pascal:11-0381804</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000458</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Learning Retention of Thoracic Pedicle Screw Placement Using a High-Resolution Augmented Reality Simulator With Haptic Feedback</title>
<author>
<name sortKey="Luciano, Cristian J" sort="Luciano, Cristian J" uniqKey="Luciano C" first="Cristian J." last="Luciano">Cristian J. Luciano</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical and Industrial Engineering, College of Engineering, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Computer Science, College of Engineering, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Banerjee, P Pat" sort="Banerjee, P Pat" uniqKey="Banerjee P" first="P. Pat" last="Banerjee">P. Pat Banerjee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical and Industrial Engineering, College of Engineering, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Computer Science, College of Engineering, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Bioengineering, College of Engineering, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bellotte, Brad" sort="Bellotte, Brad" uniqKey="Bellotte B" first="Brad" last="Bellotte">Brad Bellotte</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Neurosurgery, Allegheny General Hospital</s1>
<s2>Pittsburgh, Pennsylvania</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Michael, G" sort="Michael, G" uniqKey="Michael G" first="G." last="Michael">G. Michael</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Neurosurgery, Allegheny General Hospital</s1>
<s2>Pittsburgh, Pennsylvania</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lemole, Michael Jr" sort="Lemole, Michael Jr" uniqKey="Lemole M" first="Michael Jr" last="Lemole">Michael Jr Lemole</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Division of Neurosurgery, University of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Charbel, Fady T" sort="Charbel, Fady T" uniqKey="Charbel F" first="Fady T." last="Charbel">Fady T. Charbel</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Department of Neurosurgery, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Roitberg, Ben" sort="Roitberg, Ben" uniqKey="Roitberg B" first="Ben" last="Roitberg">Ben Roitberg</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Division of Neurosurgery, University of Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Neurosurgery</title>
<title level="j" type="abbreviated">Neurosurgery</title>
<idno type="ISSN">0148-396X</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Neurosurgery</title>
<title level="j" type="abbreviated">Neurosurgery</title>
<idno type="ISSN">0148-396X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Augmented reality</term>
<term>Feedback</term>
<term>High resolution</term>
<term>Learning</term>
<term>Nervous system diseases</term>
<term>Screw</term>
<term>Simulation</term>
<term>Simulator</term>
<term>Surgery</term>
<term>Virtual reality</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Pathologie du système nerveux</term>
<term>Apprentissage</term>
<term>Vis</term>
<term>Haute résolution</term>
<term>Réalité augmentée</term>
<term>Simulateur</term>
<term>Boucle réaction</term>
<term>Chirurgie</term>
<term>Simulation</term>
<term>Réalité virtuelle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">BACKGROUND: We evaluated the use of a part-task simulator with 3D and haptic feedback as a training tool for a common neurosurgical procedure - placement of thoracic pedicle screws. OBJECTIVE: To evaluate the learning retention of thoracic pedicle screw placement on a high-performance augmented reality and haptic technology workstation. METHODS: Fifty-one fellows and residents performed thoracic pedicle screw placement on the simulator. The virtual screws were drilled into a virtual patient's thoracic spine derived from a computed tomography data set of a real patient. RESULTS: With a 12.5% failure rate, a 2-proportion ztest yielded P=.08. For performance accuracy, an aggregate Euclidean distance deviation from entry landmark on the pedicle and a similar deviation from the target landmark in the vertebral body yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the practice to the test sessions, and the alternative hypothesis assumes an improvement. CONCLUSION: The performance accuracy on the simulator was comparable to the accuracy reported in literature on recent retrospective evaluation of such placements. The failure rates indicated a minor drop from practice to test sessions, and also indicated a trend (P = .08) toward learning retention resulting in improvement from practice to test sessions. The performance accuracy showed a 15% mean score improvement and more than a 50% reduction in standard deviation from practice to test. It showed evidence (P = .04) of performance accuracy improvement from practice to test session.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-396X</s0>
</fA01>
<fA02 i1="01">
<s0>NRSRDY</s0>
</fA02>
<fA03 i2="1">
<s0>Neurosurgery</s0>
</fA03>
<fA05>
<s2>69</s2>
</fA05>
<fA06>
<s2>3</s2>
<s3>SUP</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Learning Retention of Thoracic Pedicle Screw Placement Using a High-Resolution Augmented Reality Simulator With Haptic Feedback</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LUCIANO (Cristian J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BANERJEE (P. Pat)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BELLOTTE (Brad)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MICHAEL (G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LEMOLE (Michael JR)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CHARBEL (Fady T.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ROITBERG (Ben)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mechanical and Industrial Engineering, College of Engineering, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Computer Science, College of Engineering, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Bioengineering, College of Engineering, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Neurosurgery, Allegheny General Hospital</s1>
<s2>Pittsburgh, Pennsylvania</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Division of Neurosurgery, University of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Department of Neurosurgery, University of Illinois at Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Division of Neurosurgery, University of Chicago</s1>
<s2>Chicago, Illinois</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>14-19</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18396</s2>
<s5>354000500133000030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0381804</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Neurosurgery</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>BACKGROUND: We evaluated the use of a part-task simulator with 3D and haptic feedback as a training tool for a common neurosurgical procedure - placement of thoracic pedicle screws. OBJECTIVE: To evaluate the learning retention of thoracic pedicle screw placement on a high-performance augmented reality and haptic technology workstation. METHODS: Fifty-one fellows and residents performed thoracic pedicle screw placement on the simulator. The virtual screws were drilled into a virtual patient's thoracic spine derived from a computed tomography data set of a real patient. RESULTS: With a 12.5% failure rate, a 2-proportion ztest yielded P=.08. For performance accuracy, an aggregate Euclidean distance deviation from entry landmark on the pedicle and a similar deviation from the target landmark in the vertebral body yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the practice to the test sessions, and the alternative hypothesis assumes an improvement. CONCLUSION: The performance accuracy on the simulator was comparable to the accuracy reported in literature on recent retrospective evaluation of such placements. The failure rates indicated a minor drop from practice to test sessions, and also indicated a trend (P = .08) toward learning retention resulting in improvement from practice to test sessions. The performance accuracy showed a 15% mean score improvement and more than a 50% reduction in standard deviation from practice to test. It showed evidence (P = .04) of performance accuracy improvement from practice to test session.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B25J</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Pathologie du système nerveux</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Nervous system diseases</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sistema nervioso patología</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Apprentissage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Learning</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Aprendizaje</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Vis</s0>
<s5>10</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Screw</s0>
<s5>10</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Tornillo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Haute résolution</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>High resolution</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Alta resolucion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Réalité augmentée</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Augmented reality</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Realidad aumentada</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Simulateur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Simulator</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Simulador</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Boucle réaction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Feedback</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Retroalimentación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Chirurgie</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Surgery</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cirugía</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Simulation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Simulation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Simulación</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Réalité virtuelle</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Virtual reality</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Realidad virtual</s0>
<s5>18</s5>
</fC03>
<fN21>
<s1>262</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0381804 INIST</NO>
<ET>Learning Retention of Thoracic Pedicle Screw Placement Using a High-Resolution Augmented Reality Simulator With Haptic Feedback</ET>
<AU>LUCIANO (Cristian J.); BANERJEE (P. Pat); BELLOTTE (Brad); MICHAEL (G.); LEMOLE (Michael JR); CHARBEL (Fady T.); ROITBERG (Ben)</AU>
<AF>Department of Mechanical and Industrial Engineering, College of Engineering, University of Illinois at Chicago/Chicago, Illinois/Etats-Unis (1 aut., 2 aut.); Department of Computer Science, College of Engineering, University of Illinois at Chicago/Chicago, Illinois/Etats-Unis (1 aut., 2 aut.); Department of Bioengineering, College of Engineering, University of Illinois at Chicago/Chicago, Illinois/Etats-Unis (2 aut.); Department of Neurosurgery, Allegheny General Hospital/Pittsburgh, Pennsylvania/Etats-Unis (3 aut., 4 aut.); Division of Neurosurgery, University of Arizona/Tucson, Arizona/Etats-Unis (5 aut.); Department of Neurosurgery, University of Illinois at Chicago/Chicago, Illinois/Etats-Unis (6 aut.); Division of Neurosurgery, University of Chicago/Chicago, Illinois/Etats-Unis (7 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Neurosurgery; ISSN 0148-396X; Coden NRSRDY; Etats-Unis; Da. 2011; Vol. 69; No. 3 SUP; Pp. 14-19; Bibl. 3 ref.</SO>
<LA>Anglais</LA>
<EA>BACKGROUND: We evaluated the use of a part-task simulator with 3D and haptic feedback as a training tool for a common neurosurgical procedure - placement of thoracic pedicle screws. OBJECTIVE: To evaluate the learning retention of thoracic pedicle screw placement on a high-performance augmented reality and haptic technology workstation. METHODS: Fifty-one fellows and residents performed thoracic pedicle screw placement on the simulator. The virtual screws were drilled into a virtual patient's thoracic spine derived from a computed tomography data set of a real patient. RESULTS: With a 12.5% failure rate, a 2-proportion ztest yielded P=.08. For performance accuracy, an aggregate Euclidean distance deviation from entry landmark on the pedicle and a similar deviation from the target landmark in the vertebral body yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the practice to the test sessions, and the alternative hypothesis assumes an improvement. CONCLUSION: The performance accuracy on the simulator was comparable to the accuracy reported in literature on recent retrospective evaluation of such placements. The failure rates indicated a minor drop from practice to test sessions, and also indicated a trend (P = .08) toward learning retention resulting in improvement from practice to test sessions. The performance accuracy showed a 15% mean score improvement and more than a 50% reduction in standard deviation from practice to test. It showed evidence (P = .04) of performance accuracy improvement from practice to test session.</EA>
<CC>002B25J</CC>
<FD>Pathologie du système nerveux; Apprentissage; Vis; Haute résolution; Réalité augmentée; Simulateur; Boucle réaction; Chirurgie; Simulation; Réalité virtuelle</FD>
<ED>Nervous system diseases; Learning; Screw; High resolution; Augmented reality; Simulator; Feedback; Surgery; Simulation; Virtual reality</ED>
<SD>Sistema nervioso patología; Aprendizaje; Tornillo; Alta resolucion; Realidad aumentada; Simulador; Retroalimentación; Cirugía; Simulación; Realidad virtual</SD>
<LO>INIST-18396.354000500133000030</LO>
<ID>11-0381804</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000458 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000458 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0381804
   |texte=   Learning Retention of Thoracic Pedicle Screw Placement Using a High-Resolution Augmented Reality Simulator With Haptic Feedback
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024