Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Robustly stable bilateral teleoperation under time-varying delays and data losses: an energy-bounding approach

Identifieur interne : 000457 ( PascalFrancis/Corpus ); précédent : 000456; suivant : 000458

Robustly stable bilateral teleoperation under time-varying delays and data losses: an energy-bounding approach

Auteurs : Changhoon Seo ; Jong-Phil Kim ; Jaeha Kim ; Hyo-Sung Ahn ; Jeha Ryu

Source :

RBID : Pascal:11-0382943

Descripteurs français

English descriptors

Abstract

This paper presents an energy-bounding approach for robustly stable bilateral teleoperation over a communication channel with severe variable time delays and packet drops. We extend the energy-bounding algorithm (EBA) for haptic interaction with virtual environments to bilateral teleoperation with remote environments by using an analogy between haptic interaction and teleoperation controls. Robust stability is achieved by both restricting the extra energy that is generated by the sample-and-hold to within the consumable energy in the master device or slave robot and passifying the communication network. Theoretical analyses of transparency are performed for both position and force tracking aspects. Comprehensive test results for various free and contact motions subsequently show that the proposed bilateral EBA can ensure robust stability against fairy large constant/variable round trip time delays (tested for up to 5 sec for free motion and 600 msec for contact motion within the device workspace) as well as for packet losses of up to 90 % during data transmission.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1738-494X
A03   1    @0 J. Mech. Sci. Technol.
A05       @2 25
A06       @2 8
A08 01  1  ENG  @1 Robustly stable bilateral teleoperation under time-varying delays and data losses: an energy-bounding approach
A11 01  1    @1 SEO (Changhoon)
A11 02  1    @1 KIM (Jong-Phil)
A11 03  1    @1 KIM (Jaeha)
A11 04  1    @1 AHN (Hyo-Sung)
A11 05  1    @1 RYU (Jeha)
A14 01      @1 School of Mechatronics, Gwangju Institute of Science and Technology @2 Gwangju, 500-712 @3 KOR @Z 1 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A14 02      @1 Korea Institute of Science and Technology @2 Seoul, 136-791 @3 KOR @Z 2 aut.
A20       @1 2089-2100
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 27006 @5 354000508561040230
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 31 ref.
A47 01  1    @0 11-0382943
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of mechanical science and technology
A66 01      @0 KOR
C01 01    ENG  @0 This paper presents an energy-bounding approach for robustly stable bilateral teleoperation over a communication channel with severe variable time delays and packet drops. We extend the energy-bounding algorithm (EBA) for haptic interaction with virtual environments to bilateral teleoperation with remote environments by using an analogy between haptic interaction and teleoperation controls. Robust stability is achieved by both restricting the extra energy that is generated by the sample-and-hold to within the consumable energy in the master device or slave robot and passifying the communication network. Theoretical analyses of transparency are performed for both position and force tracking aspects. Comprehensive test results for various free and contact motions subsequently show that the proposed bilateral EBA can ensure robust stability against fairy large constant/variable round trip time delays (tested for up to 5 sec for free motion and 600 msec for contact motion within the device workspace) as well as for packet losses of up to 90 % during data transmission.
C02 01  X    @0 001D02D11
C02 02  X    @0 001D02B04
C02 03  X    @0 001D02D06
C03 01  X  FRE  @0 Téléopération @5 06
C03 01  X  ENG  @0 Remote operation @5 06
C03 01  X  SPA  @0 Teleacción @5 06
C03 02  X  FRE  @0 Système à retard @5 07
C03 02  X  ENG  @0 Delay system @5 07
C03 02  X  SPA  @0 Sistema con retardo @5 07
C03 03  X  FRE  @0 Système paramètre variable @5 08
C03 03  X  ENG  @0 Time varying system @5 08
C03 03  X  SPA  @0 Sistema parámetro variable @5 08
C03 04  X  FRE  @0 Réalité virtuelle @5 09
C03 04  X  ENG  @0 Virtual reality @5 09
C03 04  X  SPA  @0 Realidad virtual @5 09
C03 05  X  FRE  @0 Commande robuste @5 10
C03 05  X  ENG  @0 Robust control @5 10
C03 05  X  SPA  @0 Control robusta @5 10
C03 06  X  FRE  @0 Robustesse @5 11
C03 06  X  ENG  @0 Robustness @5 11
C03 06  X  SPA  @0 Robustez @5 11
C03 07  X  FRE  @0 Robotique @5 12
C03 07  X  ENG  @0 Robotics @5 12
C03 07  X  SPA  @0 Robótica @5 12
C03 08  X  FRE  @0 Réseau communication @5 13
C03 08  X  ENG  @0 Communication network @5 13
C03 08  X  SPA  @0 Red de comunicación @5 13
C03 09  X  FRE  @0 Commande force @5 14
C03 09  X  ENG  @0 Force control @5 14
C03 09  X  SPA  @0 Control fuerza @5 14
C03 10  X  FRE  @0 Commande position @5 15
C03 10  X  ENG  @0 Position control @5 15
C03 10  X  SPA  @0 Regulación de la posición @5 15
C03 11  X  FRE  @0 Transmission donnée @5 16
C03 11  X  ENG  @0 Data transmission @5 16
C03 11  X  SPA  @0 Transmisión datos @5 16
C03 12  X  FRE  @0 Relation maître esclave @5 18
C03 12  X  ENG  @0 Master slave relationship @5 18
C03 12  X  SPA  @0 Relación maestro esclavo @5 18
C03 13  X  FRE  @0 Canal transmission @5 19
C03 13  X  ENG  @0 Transmission channel @5 19
C03 13  X  SPA  @0 Canal transmisión @5 19
C03 14  X  FRE  @0 Retard variable @5 20
C03 14  X  ENG  @0 Variable delay @5 20
C03 14  X  SPA  @0 Retardo variable @5 20
C03 15  X  FRE  @0 Perte transmission @5 21
C03 15  X  ENG  @0 Transmission loss @5 21
C03 15  X  SPA  @0 Pérdida transmisión @5 21
C03 16  X  FRE  @0 Commutation paquet @5 22
C03 16  X  ENG  @0 Packet switching @5 22
C03 16  X  SPA  @0 Conmutación por paquete @5 22
C03 17  X  FRE  @0 Méthode énergétique @5 23
C03 17  X  ENG  @0 Energy method @5 23
C03 17  X  SPA  @0 Método energético @5 23
C03 18  X  FRE  @0 Temps retard @5 24
C03 18  X  ENG  @0 Delay time @5 24
C03 18  X  SPA  @0 Tiempo retardo @5 24
C03 19  X  FRE  @0 Interface utilisateur @5 25
C03 19  X  ENG  @0 User interface @5 25
C03 19  X  SPA  @0 Interfase usuario @5 25
C03 20  X  FRE  @0 Stabilité robuste @5 26
C03 20  X  ENG  @0 Robust stability @5 26
C03 20  X  SPA  @0 Estabilidad robusta @5 26
C03 21  X  FRE  @0 Transparence @5 27
C03 21  X  ENG  @0 Transparency @5 27
C03 21  X  SPA  @0 Transparencia @5 27
C03 22  X  FRE  @0 Bilatéral @5 41
C03 22  X  ENG  @0 Bilateral @5 41
C03 22  X  SPA  @0 Bilateral @5 41
C03 23  X  FRE  @0 . @4 INC @5 82
N21       @1 262
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0382943 INIST
ET : Robustly stable bilateral teleoperation under time-varying delays and data losses: an energy-bounding approach
AU : SEO (Changhoon); KIM (Jong-Phil); KIM (Jaeha); AHN (Hyo-Sung); RYU (Jeha)
AF : School of Mechatronics, Gwangju Institute of Science and Technology/Gwangju, 500-712/Corée, République de (1 aut., 3 aut., 4 aut., 5 aut.); Korea Institute of Science and Technology/Seoul, 136-791/Corée, République de (2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of mechanical science and technology; ISSN 1738-494X; Corée, République de; Da. 2011; Vol. 25; No. 8; Pp. 2089-2100; Bibl. 31 ref.
LA : Anglais
EA : This paper presents an energy-bounding approach for robustly stable bilateral teleoperation over a communication channel with severe variable time delays and packet drops. We extend the energy-bounding algorithm (EBA) for haptic interaction with virtual environments to bilateral teleoperation with remote environments by using an analogy between haptic interaction and teleoperation controls. Robust stability is achieved by both restricting the extra energy that is generated by the sample-and-hold to within the consumable energy in the master device or slave robot and passifying the communication network. Theoretical analyses of transparency are performed for both position and force tracking aspects. Comprehensive test results for various free and contact motions subsequently show that the proposed bilateral EBA can ensure robust stability against fairy large constant/variable round trip time delays (tested for up to 5 sec for free motion and 600 msec for contact motion within the device workspace) as well as for packet losses of up to 90 % during data transmission.
CC : 001D02D11; 001D02B04; 001D02D06
FD : Téléopération; Système à retard; Système paramètre variable; Réalité virtuelle; Commande robuste; Robustesse; Robotique; Réseau communication; Commande force; Commande position; Transmission donnée; Relation maître esclave; Canal transmission; Retard variable; Perte transmission; Commutation paquet; Méthode énergétique; Temps retard; Interface utilisateur; Stabilité robuste; Transparence; Bilatéral; .
ED : Remote operation; Delay system; Time varying system; Virtual reality; Robust control; Robustness; Robotics; Communication network; Force control; Position control; Data transmission; Master slave relationship; Transmission channel; Variable delay; Transmission loss; Packet switching; Energy method; Delay time; User interface; Robust stability; Transparency; Bilateral
SD : Teleacción; Sistema con retardo; Sistema parámetro variable; Realidad virtual; Control robusta; Robustez; Robótica; Red de comunicación; Control fuerza; Regulación de la posición; Transmisión datos; Relación maestro esclavo; Canal transmisión; Retardo variable; Pérdida transmisión; Conmutación por paquete; Método energético; Tiempo retardo; Interfase usuario; Estabilidad robusta; Transparencia; Bilateral
LO : INIST-27006.354000508561040230
ID : 11-0382943

Links to Exploration step

Pascal:11-0382943

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Robustly stable bilateral teleoperation under time-varying delays and data losses: an energy-bounding approach</title>
<author>
<name sortKey="Seo, Changhoon" sort="Seo, Changhoon" uniqKey="Seo C" first="Changhoon" last="Seo">Changhoon Seo</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Mechatronics, Gwangju Institute of Science and Technology</s1>
<s2>Gwangju, 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jong Phil" sort="Kim, Jong Phil" uniqKey="Kim J" first="Jong-Phil" last="Kim">Jong-Phil Kim</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Korea Institute of Science and Technology</s1>
<s2>Seoul, 136-791</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jaeha" sort="Kim, Jaeha" uniqKey="Kim J" first="Jaeha" last="Kim">Jaeha Kim</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Mechatronics, Gwangju Institute of Science and Technology</s1>
<s2>Gwangju, 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ahn, Hyo Sung" sort="Ahn, Hyo Sung" uniqKey="Ahn H" first="Hyo-Sung" last="Ahn">Hyo-Sung Ahn</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Mechatronics, Gwangju Institute of Science and Technology</s1>
<s2>Gwangju, 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ryu, Jeha" sort="Ryu, Jeha" uniqKey="Ryu J" first="Jeha" last="Ryu">Jeha Ryu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Mechatronics, Gwangju Institute of Science and Technology</s1>
<s2>Gwangju, 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0382943</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0382943 INIST</idno>
<idno type="RBID">Pascal:11-0382943</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000457</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Robustly stable bilateral teleoperation under time-varying delays and data losses: an energy-bounding approach</title>
<author>
<name sortKey="Seo, Changhoon" sort="Seo, Changhoon" uniqKey="Seo C" first="Changhoon" last="Seo">Changhoon Seo</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Mechatronics, Gwangju Institute of Science and Technology</s1>
<s2>Gwangju, 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jong Phil" sort="Kim, Jong Phil" uniqKey="Kim J" first="Jong-Phil" last="Kim">Jong-Phil Kim</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Korea Institute of Science and Technology</s1>
<s2>Seoul, 136-791</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jaeha" sort="Kim, Jaeha" uniqKey="Kim J" first="Jaeha" last="Kim">Jaeha Kim</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Mechatronics, Gwangju Institute of Science and Technology</s1>
<s2>Gwangju, 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ahn, Hyo Sung" sort="Ahn, Hyo Sung" uniqKey="Ahn H" first="Hyo-Sung" last="Ahn">Hyo-Sung Ahn</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Mechatronics, Gwangju Institute of Science and Technology</s1>
<s2>Gwangju, 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ryu, Jeha" sort="Ryu, Jeha" uniqKey="Ryu J" first="Jeha" last="Ryu">Jeha Ryu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Mechatronics, Gwangju Institute of Science and Technology</s1>
<s2>Gwangju, 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of mechanical science and technology</title>
<title level="j" type="abbreviated">J. Mech. Sci. Technol. </title>
<idno type="ISSN">1738-494X</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of mechanical science and technology</title>
<title level="j" type="abbreviated">J. Mech. Sci. Technol. </title>
<idno type="ISSN">1738-494X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bilateral</term>
<term>Communication network</term>
<term>Data transmission</term>
<term>Delay system</term>
<term>Delay time</term>
<term>Energy method</term>
<term>Force control</term>
<term>Master slave relationship</term>
<term>Packet switching</term>
<term>Position control</term>
<term>Remote operation</term>
<term>Robotics</term>
<term>Robust control</term>
<term>Robust stability</term>
<term>Robustness</term>
<term>Time varying system</term>
<term>Transmission channel</term>
<term>Transmission loss</term>
<term>Transparency</term>
<term>User interface</term>
<term>Variable delay</term>
<term>Virtual reality</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Téléopération</term>
<term>Système à retard</term>
<term>Système paramètre variable</term>
<term>Réalité virtuelle</term>
<term>Commande robuste</term>
<term>Robustesse</term>
<term>Robotique</term>
<term>Réseau communication</term>
<term>Commande force</term>
<term>Commande position</term>
<term>Transmission donnée</term>
<term>Relation maître esclave</term>
<term>Canal transmission</term>
<term>Retard variable</term>
<term>Perte transmission</term>
<term>Commutation paquet</term>
<term>Méthode énergétique</term>
<term>Temps retard</term>
<term>Interface utilisateur</term>
<term>Stabilité robuste</term>
<term>Transparence</term>
<term>Bilatéral</term>
<term>.</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper presents an energy-bounding approach for robustly stable bilateral teleoperation over a communication channel with severe variable time delays and packet drops. We extend the energy-bounding algorithm (EBA) for haptic interaction with virtual environments to bilateral teleoperation with remote environments by using an analogy between haptic interaction and teleoperation controls. Robust stability is achieved by both restricting the extra energy that is generated by the sample-and-hold to within the consumable energy in the master device or slave robot and passifying the communication network. Theoretical analyses of transparency are performed for both position and force tracking aspects. Comprehensive test results for various free and contact motions subsequently show that the proposed bilateral EBA can ensure robust stability against fairy large constant/variable round trip time delays (tested for up to 5 sec for free motion and 600 msec for contact motion within the device workspace) as well as for packet losses of up to 90 % during data transmission.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1738-494X</s0>
</fA01>
<fA03 i2="1">
<s0>J. Mech. Sci. Technol. </s0>
</fA03>
<fA05>
<s2>25</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Robustly stable bilateral teleoperation under time-varying delays and data losses: an energy-bounding approach</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SEO (Changhoon)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KIM (Jong-Phil)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KIM (Jaeha)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>AHN (Hyo-Sung)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RYU (Jeha)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Mechatronics, Gwangju Institute of Science and Technology</s1>
<s2>Gwangju, 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Korea Institute of Science and Technology</s1>
<s2>Seoul, 136-791</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>2089-2100</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27006</s2>
<s5>354000508561040230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>31 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0382943</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of mechanical science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>KOR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper presents an energy-bounding approach for robustly stable bilateral teleoperation over a communication channel with severe variable time delays and packet drops. We extend the energy-bounding algorithm (EBA) for haptic interaction with virtual environments to bilateral teleoperation with remote environments by using an analogy between haptic interaction and teleoperation controls. Robust stability is achieved by both restricting the extra energy that is generated by the sample-and-hold to within the consumable energy in the master device or slave robot and passifying the communication network. Theoretical analyses of transparency are performed for both position and force tracking aspects. Comprehensive test results for various free and contact motions subsequently show that the proposed bilateral EBA can ensure robust stability against fairy large constant/variable round trip time delays (tested for up to 5 sec for free motion and 600 msec for contact motion within the device workspace) as well as for packet losses of up to 90 % during data transmission.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D02D06</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Téléopération</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Remote operation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Teleacción</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Système à retard</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Delay system</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Sistema con retardo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Système paramètre variable</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Time varying system</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sistema parámetro variable</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Réalité virtuelle</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Virtual reality</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Realidad virtual</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Commande robuste</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Robust control</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Control robusta</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Robustesse</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Robustness</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Robustez</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Réseau communication</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Communication network</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Red de comunicación</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Commande force</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Force control</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Control fuerza</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Commande position</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Position control</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Regulación de la posición</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Transmission donnée</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Data transmission</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Transmisión datos</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Relation maître esclave</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Master slave relationship</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Relación maestro esclavo</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Canal transmission</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Transmission channel</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Canal transmisión</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Retard variable</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Variable delay</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Retardo variable</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Perte transmission</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Transmission loss</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Pérdida transmisión</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Commutation paquet</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Packet switching</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Conmutación por paquete</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Méthode énergétique</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Energy method</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Método energético</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Temps retard</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Delay time</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Tiempo retardo</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>User interface</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Stabilité robuste</s0>
<s5>26</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Robust stability</s0>
<s5>26</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Estabilidad robusta</s0>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Transparence</s0>
<s5>27</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Transparency</s0>
<s5>27</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Transparencia</s0>
<s5>27</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Bilatéral</s0>
<s5>41</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Bilateral</s0>
<s5>41</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Bilateral</s0>
<s5>41</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>262</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0382943 INIST</NO>
<ET>Robustly stable bilateral teleoperation under time-varying delays and data losses: an energy-bounding approach</ET>
<AU>SEO (Changhoon); KIM (Jong-Phil); KIM (Jaeha); AHN (Hyo-Sung); RYU (Jeha)</AU>
<AF>School of Mechatronics, Gwangju Institute of Science and Technology/Gwangju, 500-712/Corée, République de (1 aut., 3 aut., 4 aut., 5 aut.); Korea Institute of Science and Technology/Seoul, 136-791/Corée, République de (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of mechanical science and technology; ISSN 1738-494X; Corée, République de; Da. 2011; Vol. 25; No. 8; Pp. 2089-2100; Bibl. 31 ref.</SO>
<LA>Anglais</LA>
<EA>This paper presents an energy-bounding approach for robustly stable bilateral teleoperation over a communication channel with severe variable time delays and packet drops. We extend the energy-bounding algorithm (EBA) for haptic interaction with virtual environments to bilateral teleoperation with remote environments by using an analogy between haptic interaction and teleoperation controls. Robust stability is achieved by both restricting the extra energy that is generated by the sample-and-hold to within the consumable energy in the master device or slave robot and passifying the communication network. Theoretical analyses of transparency are performed for both position and force tracking aspects. Comprehensive test results for various free and contact motions subsequently show that the proposed bilateral EBA can ensure robust stability against fairy large constant/variable round trip time delays (tested for up to 5 sec for free motion and 600 msec for contact motion within the device workspace) as well as for packet losses of up to 90 % during data transmission.</EA>
<CC>001D02D11; 001D02B04; 001D02D06</CC>
<FD>Téléopération; Système à retard; Système paramètre variable; Réalité virtuelle; Commande robuste; Robustesse; Robotique; Réseau communication; Commande force; Commande position; Transmission donnée; Relation maître esclave; Canal transmission; Retard variable; Perte transmission; Commutation paquet; Méthode énergétique; Temps retard; Interface utilisateur; Stabilité robuste; Transparence; Bilatéral; .</FD>
<ED>Remote operation; Delay system; Time varying system; Virtual reality; Robust control; Robustness; Robotics; Communication network; Force control; Position control; Data transmission; Master slave relationship; Transmission channel; Variable delay; Transmission loss; Packet switching; Energy method; Delay time; User interface; Robust stability; Transparency; Bilateral</ED>
<SD>Teleacción; Sistema con retardo; Sistema parámetro variable; Realidad virtual; Control robusta; Robustez; Robótica; Red de comunicación; Control fuerza; Regulación de la posición; Transmisión datos; Relación maestro esclavo; Canal transmisión; Retardo variable; Pérdida transmisión; Conmutación por paquete; Método energético; Tiempo retardo; Interfase usuario; Estabilidad robusta; Transparencia; Bilateral</SD>
<LO>INIST-27006.354000508561040230</LO>
<ID>11-0382943</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000457 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000457 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0382943
   |texte=   Robustly stable bilateral teleoperation under time-varying delays and data losses: an energy-bounding approach
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024