Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Blending algorithm for position control with a hybrid actuator made of DC servomotor and brake

Identifieur interne : 000432 ( PascalFrancis/Corpus ); précédent : 000431; suivant : 000433

Blending algorithm for position control with a hybrid actuator made of DC servomotor and brake

Auteurs : Berk Gonenc ; Hakan Gurocak

Source :

RBID : Pascal:11-0439391

Descripteurs français

English descriptors

Abstract

Purpose - This paper aims to present a hybrid actuator controller to obtain fast and stiff position response without any overshoot by blending input signals of a DC servomotor and a particle brake. Design/methodology/approach - The hybrid actuator controller has a module to estimate instantaneous changes in inertia and a blending algorithm that adjusts input signals to the motor and the brake so that together, as a hybrid actuator, they can achieve a fast, stiff position response without overshoot. The control logic implemented in the controller is derived from the kinematics of the system. For the blending algorithm, two separate cases are explored in which the user has the option to either utilize the full-braking capacity or specify a safe deceleration limit for the system. Findings - The blending algorithm enables the system to operate nearly twice as fast as the motor-only case without any overshoot or oscillations. The controller can reject inertial load changes and significant external disturbances. Originality/value - Such hybrid actuators along with the developed controller can be used in robotics and automation to increase the system accuracy and operational speed resulting in higher production rates. In addition, much stiffer haptic force feedback interfaces for virtual reality applications can be designed with smaller actuators. The blending algorithm provides considerable improvements and uses a physics-based simple and easy-to-implement structure.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0143-991X
A02 01      @0 IDRBAT
A03   1    @0 Ind. rob.
A05       @2 38
A06       @2 5
A08 01  1  ENG  @1 Blending algorithm for position control with a hybrid actuator made of DC servomotor and brake
A09 01  1  ENG  @1 Humanitarian military applications
A11 01  1    @1 GONENC (Berk)
A11 02  1    @1 GUROCAK (Hakan)
A12 01  1    @1 ARKIN (Ronald) @9 limin.
A14 01      @1 School of Engineering and Computer Science, Washington State University @2 Vancouver, Washington @3 USA @Z 1 aut. @Z 2 aut.
A15 01      @1 School of Interactive Computing, Georgia Institute of Technology @2 Atlanta, Georgia @3 USA @Z 1 aut.
A20       @1 492-499
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 18235 @5 354000509127900070
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 1/2 p.
A47 01  1    @0 11-0439391
A60       @1 P
A61       @0 A
A64 01  1    @0 Industrial robot
A66 01      @0 GBR
C01 01    ENG  @0 Purpose - This paper aims to present a hybrid actuator controller to obtain fast and stiff position response without any overshoot by blending input signals of a DC servomotor and a particle brake. Design/methodology/approach - The hybrid actuator controller has a module to estimate instantaneous changes in inertia and a blending algorithm that adjusts input signals to the motor and the brake so that together, as a hybrid actuator, they can achieve a fast, stiff position response without overshoot. The control logic implemented in the controller is derived from the kinematics of the system. For the blending algorithm, two separate cases are explored in which the user has the option to either utilize the full-braking capacity or specify a safe deceleration limit for the system. Findings - The blending algorithm enables the system to operate nearly twice as fast as the motor-only case without any overshoot or oscillations. The controller can reject inertial load changes and significant external disturbances. Originality/value - Such hybrid actuators along with the developed controller can be used in robotics and automation to increase the system accuracy and operational speed resulting in higher production rates. In addition, much stiffer haptic force feedback interfaces for virtual reality applications can be designed with smaller actuators. The blending algorithm provides considerable improvements and uses a physics-based simple and easy-to-implement structure.
C02 01  X    @0 001D12E04
C02 02  X    @0 001B40F10
C02 03  X    @0 001D02D11
C02 04  X    @0 001D02B04
C03 01  X  FRE  @0 Programme commande @5 06
C03 01  X  ENG  @0 Control program @5 06
C03 01  X  SPA  @0 Programa mando @5 06
C03 02  X  FRE  @0 Commande position @5 07
C03 02  X  ENG  @0 Position control @5 07
C03 02  X  SPA  @0 Regulación de la posición @5 07
C03 03  X  FRE  @0 Commande hybride @5 08
C03 03  X  ENG  @0 Hybrid control @5 08
C03 03  X  SPA  @0 Control híbrida @5 08
C03 04  X  FRE  @0 Commande logique @5 09
C03 04  X  ENG  @0 Logic control @5 09
C03 04  X  SPA  @0 Control lógico @5 09
C03 05  X  FRE  @0 Rejet perturbation @5 10
C03 05  X  ENG  @0 Disturbance rejection @5 10
C03 05  X  SPA  @0 Recuazamiento pertubación @5 10
C03 06  X  FRE  @0 Robotique @5 11
C03 06  X  ENG  @0 Robotics @5 11
C03 06  X  SPA  @0 Robótica @5 11
C03 07  X  FRE  @0 Commande force @5 12
C03 07  X  ENG  @0 Force control @5 12
C03 07  X  SPA  @0 Control fuerza @5 12
C03 08  X  FRE  @0 Mécatronique @5 13
C03 08  X  ENG  @0 Mechatronics @5 13
C03 08  X  SPA  @0 Mecatrónica @5 13
C03 09  X  FRE  @0 Actionneur @5 18
C03 09  X  ENG  @0 Actuator @5 18
C03 09  X  SPA  @0 Accionador @5 18
C03 10  X  FRE  @0 Moteur courant continu @5 19
C03 10  X  ENG  @0 Dc motor @5 19
C03 10  X  SPA  @0 Motor corriente continua @5 19
C03 11  X  FRE  @0 Servomoteur @5 20
C03 11  X  ENG  @0 Servomotor @5 20
C03 11  X  SPA  @0 Servomotor @5 20
C03 12  X  FRE  @0 Frein @5 21
C03 12  X  ENG  @0 Brake @5 21
C03 12  X  SPA  @0 Freno @5 21
C03 13  X  FRE  @0 Dépassement @5 22
C03 13  X  ENG  @0 Overshoot @5 22
C03 13  X  SPA  @0 Rebasamiento @5 22
C03 14  X  FRE  @0 Inertie @5 23
C03 14  X  ENG  @0 Inertia @5 23
C03 14  X  SPA  @0 Inercia @5 23
C03 15  X  FRE  @0 Freinage @5 24
C03 15  X  ENG  @0 Braking @5 24
C03 15  X  SPA  @0 Frenado @5 24
C03 16  X  FRE  @0 Décélération @5 25
C03 16  X  ENG  @0 Deceleration @5 25
C03 16  X  SPA  @0 Desaceleración @5 25
C03 17  X  FRE  @0 Taux production @5 26
C03 17  X  ENG  @0 Production rate @5 26
C03 17  X  SPA  @0 Índice producción @5 26
C03 18  X  FRE  @0 Interface utilisateur @5 27
C03 18  X  ENG  @0 User interface @5 27
C03 18  X  SPA  @0 Interfase usuario @5 27
C03 19  X  FRE  @0 Signal entrée @5 28
C03 19  X  ENG  @0 Input signal @5 28
C03 19  X  SPA  @0 Señal entrada @5 28
C03 20  X  FRE  @0 Cinématique @5 29
C03 20  X  ENG  @0 Kinematics @5 29
C03 20  X  SPA  @0 Cinemática @5 29
C03 21  X  FRE  @0 Sensibilité tactile @5 41
C03 21  X  ENG  @0 Tactile sensitivity @5 41
C03 21  X  SPA  @0 Sensibilidad tactil @5 41
N21       @1 297
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0439391 INIST
ET : Blending algorithm for position control with a hybrid actuator made of DC servomotor and brake
AU : GONENC (Berk); GUROCAK (Hakan); ARKIN (Ronald)
AF : School of Engineering and Computer Science, Washington State University/Vancouver, Washington/Etats-Unis (1 aut., 2 aut.); School of Interactive Computing, Georgia Institute of Technology/Atlanta, Georgia/Etats-Unis (1 aut.)
DT : Publication en série; Niveau analytique
SO : Industrial robot; ISSN 0143-991X; Coden IDRBAT; Royaume-Uni; Da. 2011; Vol. 38; No. 5; Pp. 492-499; Bibl. 1/2 p.
LA : Anglais
EA : Purpose - This paper aims to present a hybrid actuator controller to obtain fast and stiff position response without any overshoot by blending input signals of a DC servomotor and a particle brake. Design/methodology/approach - The hybrid actuator controller has a module to estimate instantaneous changes in inertia and a blending algorithm that adjusts input signals to the motor and the brake so that together, as a hybrid actuator, they can achieve a fast, stiff position response without overshoot. The control logic implemented in the controller is derived from the kinematics of the system. For the blending algorithm, two separate cases are explored in which the user has the option to either utilize the full-braking capacity or specify a safe deceleration limit for the system. Findings - The blending algorithm enables the system to operate nearly twice as fast as the motor-only case without any overshoot or oscillations. The controller can reject inertial load changes and significant external disturbances. Originality/value - Such hybrid actuators along with the developed controller can be used in robotics and automation to increase the system accuracy and operational speed resulting in higher production rates. In addition, much stiffer haptic force feedback interfaces for virtual reality applications can be designed with smaller actuators. The blending algorithm provides considerable improvements and uses a physics-based simple and easy-to-implement structure.
CC : 001D12E04; 001B40F10; 001D02D11; 001D02B04
FD : Programme commande; Commande position; Commande hybride; Commande logique; Rejet perturbation; Robotique; Commande force; Mécatronique; Actionneur; Moteur courant continu; Servomoteur; Frein; Dépassement; Inertie; Freinage; Décélération; Taux production; Interface utilisateur; Signal entrée; Cinématique; Sensibilité tactile
ED : Control program; Position control; Hybrid control; Logic control; Disturbance rejection; Robotics; Force control; Mechatronics; Actuator; Dc motor; Servomotor; Brake; Overshoot; Inertia; Braking; Deceleration; Production rate; User interface; Input signal; Kinematics; Tactile sensitivity
SD : Programa mando; Regulación de la posición; Control híbrida; Control lógico; Recuazamiento pertubación; Robótica; Control fuerza; Mecatrónica; Accionador; Motor corriente continua; Servomotor; Freno; Rebasamiento; Inercia; Frenado; Desaceleración; Índice producción; Interfase usuario; Señal entrada; Cinemática; Sensibilidad tactil
LO : INIST-18235.354000509127900070
ID : 11-0439391

Links to Exploration step

Pascal:11-0439391

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Blending algorithm for position control with a hybrid actuator made of DC servomotor and brake</title>
<author>
<name sortKey="Gonenc, Berk" sort="Gonenc, Berk" uniqKey="Gonenc B" first="Berk" last="Gonenc">Berk Gonenc</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University</s1>
<s2>Vancouver, Washington</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gurocak, Hakan" sort="Gurocak, Hakan" uniqKey="Gurocak H" first="Hakan" last="Gurocak">Hakan Gurocak</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University</s1>
<s2>Vancouver, Washington</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0439391</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0439391 INIST</idno>
<idno type="RBID">Pascal:11-0439391</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000432</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Blending algorithm for position control with a hybrid actuator made of DC servomotor and brake</title>
<author>
<name sortKey="Gonenc, Berk" sort="Gonenc, Berk" uniqKey="Gonenc B" first="Berk" last="Gonenc">Berk Gonenc</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University</s1>
<s2>Vancouver, Washington</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gurocak, Hakan" sort="Gurocak, Hakan" uniqKey="Gurocak H" first="Hakan" last="Gurocak">Hakan Gurocak</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University</s1>
<s2>Vancouver, Washington</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Industrial robot</title>
<title level="j" type="abbreviated">Ind. rob.</title>
<idno type="ISSN">0143-991X</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Industrial robot</title>
<title level="j" type="abbreviated">Ind. rob.</title>
<idno type="ISSN">0143-991X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actuator</term>
<term>Brake</term>
<term>Braking</term>
<term>Control program</term>
<term>Dc motor</term>
<term>Deceleration</term>
<term>Disturbance rejection</term>
<term>Force control</term>
<term>Hybrid control</term>
<term>Inertia</term>
<term>Input signal</term>
<term>Kinematics</term>
<term>Logic control</term>
<term>Mechatronics</term>
<term>Overshoot</term>
<term>Position control</term>
<term>Production rate</term>
<term>Robotics</term>
<term>Servomotor</term>
<term>Tactile sensitivity</term>
<term>User interface</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Programme commande</term>
<term>Commande position</term>
<term>Commande hybride</term>
<term>Commande logique</term>
<term>Rejet perturbation</term>
<term>Robotique</term>
<term>Commande force</term>
<term>Mécatronique</term>
<term>Actionneur</term>
<term>Moteur courant continu</term>
<term>Servomoteur</term>
<term>Frein</term>
<term>Dépassement</term>
<term>Inertie</term>
<term>Freinage</term>
<term>Décélération</term>
<term>Taux production</term>
<term>Interface utilisateur</term>
<term>Signal entrée</term>
<term>Cinématique</term>
<term>Sensibilité tactile</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Purpose - This paper aims to present a hybrid actuator controller to obtain fast and stiff position response without any overshoot by blending input signals of a DC servomotor and a particle brake. Design/methodology/approach - The hybrid actuator controller has a module to estimate instantaneous changes in inertia and a blending algorithm that adjusts input signals to the motor and the brake so that together, as a hybrid actuator, they can achieve a fast, stiff position response without overshoot. The control logic implemented in the controller is derived from the kinematics of the system. For the blending algorithm, two separate cases are explored in which the user has the option to either utilize the full-braking capacity or specify a safe deceleration limit for the system. Findings - The blending algorithm enables the system to operate nearly twice as fast as the motor-only case without any overshoot or oscillations. The controller can reject inertial load changes and significant external disturbances. Originality/value - Such hybrid actuators along with the developed controller can be used in robotics and automation to increase the system accuracy and operational speed resulting in higher production rates. In addition, much stiffer haptic force feedback interfaces for virtual reality applications can be designed with smaller actuators. The blending algorithm provides considerable improvements and uses a physics-based simple and easy-to-implement structure.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0143-991X</s0>
</fA01>
<fA02 i1="01">
<s0>IDRBAT</s0>
</fA02>
<fA03 i2="1">
<s0>Ind. rob.</s0>
</fA03>
<fA05>
<s2>38</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Blending algorithm for position control with a hybrid actuator made of DC servomotor and brake</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Humanitarian military applications</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>GONENC (Berk)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GUROCAK (Hakan)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ARKIN (Ronald)</s1>
<s9>limin.</s9>
</fA12>
<fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University</s1>
<s2>Vancouver, Washington</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>School of Interactive Computing, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>492-499</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18235</s2>
<s5>354000509127900070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/2 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0439391</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Industrial robot</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Purpose - This paper aims to present a hybrid actuator controller to obtain fast and stiff position response without any overshoot by blending input signals of a DC servomotor and a particle brake. Design/methodology/approach - The hybrid actuator controller has a module to estimate instantaneous changes in inertia and a blending algorithm that adjusts input signals to the motor and the brake so that together, as a hybrid actuator, they can achieve a fast, stiff position response without overshoot. The control logic implemented in the controller is derived from the kinematics of the system. For the blending algorithm, two separate cases are explored in which the user has the option to either utilize the full-braking capacity or specify a safe deceleration limit for the system. Findings - The blending algorithm enables the system to operate nearly twice as fast as the motor-only case without any overshoot or oscillations. The controller can reject inertial load changes and significant external disturbances. Originality/value - Such hybrid actuators along with the developed controller can be used in robotics and automation to increase the system accuracy and operational speed resulting in higher production rates. In addition, much stiffer haptic force feedback interfaces for virtual reality applications can be designed with smaller actuators. The blending algorithm provides considerable improvements and uses a physics-based simple and easy-to-implement structure.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D12E04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001B40F10</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Programme commande</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Control program</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Programa mando</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Commande position</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Position control</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Regulación de la posición</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Commande hybride</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Hybrid control</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Control híbrida</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Commande logique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Logic control</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Control lógico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Rejet perturbation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Disturbance rejection</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Recuazamiento pertubación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Commande force</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Force control</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Control fuerza</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Mécatronique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Mechatronics</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Mecatrónica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Actionneur</s0>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Actuator</s0>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Accionador</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Moteur courant continu</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Dc motor</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Motor corriente continua</s0>
<s5>19</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Servomoteur</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Servomotor</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Servomotor</s0>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Frein</s0>
<s5>21</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Brake</s0>
<s5>21</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Freno</s0>
<s5>21</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Dépassement</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Overshoot</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Rebasamiento</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Inertie</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Inertia</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Inercia</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Freinage</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Braking</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Frenado</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Décélération</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Deceleration</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Desaceleración</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Taux production</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Production rate</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Índice producción</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>User interface</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Signal entrée</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Input signal</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Señal entrada</s0>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Cinématique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Kinematics</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Cinemática</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>41</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>41</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>41</s5>
</fC03>
<fN21>
<s1>297</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0439391 INIST</NO>
<ET>Blending algorithm for position control with a hybrid actuator made of DC servomotor and brake</ET>
<AU>GONENC (Berk); GUROCAK (Hakan); ARKIN (Ronald)</AU>
<AF>School of Engineering and Computer Science, Washington State University/Vancouver, Washington/Etats-Unis (1 aut., 2 aut.); School of Interactive Computing, Georgia Institute of Technology/Atlanta, Georgia/Etats-Unis (1 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Industrial robot; ISSN 0143-991X; Coden IDRBAT; Royaume-Uni; Da. 2011; Vol. 38; No. 5; Pp. 492-499; Bibl. 1/2 p.</SO>
<LA>Anglais</LA>
<EA>Purpose - This paper aims to present a hybrid actuator controller to obtain fast and stiff position response without any overshoot by blending input signals of a DC servomotor and a particle brake. Design/methodology/approach - The hybrid actuator controller has a module to estimate instantaneous changes in inertia and a blending algorithm that adjusts input signals to the motor and the brake so that together, as a hybrid actuator, they can achieve a fast, stiff position response without overshoot. The control logic implemented in the controller is derived from the kinematics of the system. For the blending algorithm, two separate cases are explored in which the user has the option to either utilize the full-braking capacity or specify a safe deceleration limit for the system. Findings - The blending algorithm enables the system to operate nearly twice as fast as the motor-only case without any overshoot or oscillations. The controller can reject inertial load changes and significant external disturbances. Originality/value - Such hybrid actuators along with the developed controller can be used in robotics and automation to increase the system accuracy and operational speed resulting in higher production rates. In addition, much stiffer haptic force feedback interfaces for virtual reality applications can be designed with smaller actuators. The blending algorithm provides considerable improvements and uses a physics-based simple and easy-to-implement structure.</EA>
<CC>001D12E04; 001B40F10; 001D02D11; 001D02B04</CC>
<FD>Programme commande; Commande position; Commande hybride; Commande logique; Rejet perturbation; Robotique; Commande force; Mécatronique; Actionneur; Moteur courant continu; Servomoteur; Frein; Dépassement; Inertie; Freinage; Décélération; Taux production; Interface utilisateur; Signal entrée; Cinématique; Sensibilité tactile</FD>
<ED>Control program; Position control; Hybrid control; Logic control; Disturbance rejection; Robotics; Force control; Mechatronics; Actuator; Dc motor; Servomotor; Brake; Overshoot; Inertia; Braking; Deceleration; Production rate; User interface; Input signal; Kinematics; Tactile sensitivity</ED>
<SD>Programa mando; Regulación de la posición; Control híbrida; Control lógico; Recuazamiento pertubación; Robótica; Control fuerza; Mecatrónica; Accionador; Motor corriente continua; Servomotor; Freno; Rebasamiento; Inercia; Frenado; Desaceleración; Índice producción; Interfase usuario; Señal entrada; Cinemática; Sensibilidad tactil</SD>
<LO>INIST-18235.354000509127900070</LO>
<ID>11-0439391</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000432 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000432 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0439391
   |texte=   Blending algorithm for position control with a hybrid actuator made of DC servomotor and brake
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024