Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A 4-DOF haptic master using ER fluid for minimally invasive surgery system application

Identifieur interne : 000199 ( PascalFrancis/Corpus ); précédent : 000198; suivant : 000200

A 4-DOF haptic master using ER fluid for minimally invasive surgery system application

Auteurs : Jong-Seok Oh ; Young-Min Han ; Sang-Rock Lee ; Seung-Bok Choi

Source :

RBID : Pascal:13-0185333

Descripteurs français

English descriptors

Abstract

This paper presents a novel 4-degrees-of-freedom (4-DOF) haptic master using a electrorheological (ER) fluid which is applicable to minimally invasive surgery (MIS) systems. By adopting a controllable ER fluid, the master can easily generate 4-DOF repulsive forces with the advantages of a simple mechanism and continuous force control capability. The proposed master consists of two actuators: an ER spherical joint for 3-DOF rotational motion and an ER piston device for 1-DOF translational motion. The generated torque/force models are mathematically derived by analyzing the mechanism geometry and using the Bingham characteristics of an ER Fluid. The haptic master is optimally designed and manufactured based on the mathematical torque/force models. The repulsive torque/force responses are experimentally evaluated and expressed by the first-order and second-order dynamic equations for each motion. A sliding mode controller (SMC), which is known to be robust to uncertainties, is then designed and empirically implemented to achieve the desired torque/force trajectories. It is demonstrated by presenting torque/force tracking results of both rotational and translational motions that the proposed 4-DOF ER haptic master integrated with the SMC can provide an effective haptic control performance for MIS applications.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0964-1726
A03   1    @0 Smart mater. struc.
A05       @2 22
A06       @2 4
A08 01  1  ENG  @1 A 4-DOF haptic master using ER fluid for minimally invasive surgery system application
A11 01  1    @1 OH (Jong-Seok)
A11 02  1    @1 HAN (Young-Min)
A11 03  1    @1 LEE (Sang-Rock)
A11 04  1    @1 CHOI (Seung-Bok)
A14 01      @1 Department of Mechanical Engineering, Inha University @2 Incheon 402-751 @3 KOR @Z 1 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Division of Automotive Engineering, Ajou Motor College @2 Chungnam 355-769 @3 KOR @Z 2 aut.
A20       @2 045004.1-045004.15
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 26248 @5 354000505137880050
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 21 ref.
A47 01  1    @0 13-0185333
A60       @1 P
A61       @0 A
A64 01  1    @0 Smart materials and structures
A66 01      @0 GBR
C01 01    ENG  @0 This paper presents a novel 4-degrees-of-freedom (4-DOF) haptic master using a electrorheological (ER) fluid which is applicable to minimally invasive surgery (MIS) systems. By adopting a controllable ER fluid, the master can easily generate 4-DOF repulsive forces with the advantages of a simple mechanism and continuous force control capability. The proposed master consists of two actuators: an ER spherical joint for 3-DOF rotational motion and an ER piston device for 1-DOF translational motion. The generated torque/force models are mathematically derived by analyzing the mechanism geometry and using the Bingham characteristics of an ER Fluid. The haptic master is optimally designed and manufactured based on the mathematical torque/force models. The repulsive torque/force responses are experimentally evaluated and expressed by the first-order and second-order dynamic equations for each motion. A sliding mode controller (SMC), which is known to be robust to uncertainties, is then designed and empirically implemented to achieve the desired torque/force trajectories. It is demonstrated by presenting torque/force tracking results of both rotational and translational motions that the proposed 4-DOF ER haptic master integrated with the SMC can provide an effective haptic control performance for MIS applications.
C02 01  3    @0 001B00G07T
C02 02  3    @0 001B00G07M
C03 01  X  FRE  @0 Robotique @5 02
C03 01  X  ENG  @0 Robotics @5 02
C03 01  X  SPA  @0 Robótica @5 02
C03 02  3  FRE  @0 Commande force @5 03
C03 02  3  ENG  @0 Force control @5 03
C03 03  3  FRE  @0 Actionneur @5 04
C03 03  3  ENG  @0 Actuators @5 04
C03 04  3  FRE  @0 Modèle mathématique @5 06
C03 04  3  ENG  @0 Mathematical models @5 06
C03 05  X  FRE  @0 Mode glissant @5 07
C03 05  X  ENG  @0 Sliding mode @5 07
C03 05  X  SPA  @0 Modo deslizante @5 07
C03 06  X  FRE  @0 Système 4 degré liberté @5 11
C03 06  X  ENG  @0 System with four degrees of freedom @5 11
C03 06  X  SPA  @0 Sistema 4 grados libertad @5 11
C03 07  X  FRE  @0 Fluide Bingham @5 12
C03 07  X  ENG  @0 Bingham plastic @5 12
C03 07  X  SPA  @0 Fluido Bingham @5 12
C03 08  X  FRE  @0 Couple mécanique @5 13
C03 08  X  ENG  @0 Mechanical torque @5 13
C03 08  X  SPA  @0 Cupla mecánica @5 13
C03 09  3  FRE  @0 Piston @5 14
C03 09  3  ENG  @0 Pistons @5 14
C03 10  3  FRE  @0 Interface haptique @5 15
C03 10  3  ENG  @0 Haptic interfaces @5 15
C03 11  X  FRE  @0 Fluide électrorhéologique @5 16
C03 11  X  ENG  @0 Electrorheological fluid @5 16
C03 11  X  SPA  @0 Fluido electroreologico @5 16
N21       @1 168

Format Inist (serveur)

NO : PASCAL 13-0185333 INIST
ET : A 4-DOF haptic master using ER fluid for minimally invasive surgery system application
AU : OH (Jong-Seok); HAN (Young-Min); LEE (Sang-Rock); CHOI (Seung-Bok)
AF : Department of Mechanical Engineering, Inha University/Incheon 402-751/Corée, République de (1 aut., 3 aut., 4 aut.); Division of Automotive Engineering, Ajou Motor College/Chungnam 355-769/Corée, République de (2 aut.)
DT : Publication en série; Niveau analytique
SO : Smart materials and structures; ISSN 0964-1726; Royaume-Uni; Da. 2013; Vol. 22; No. 4; 045004.1-045004.15; Bibl. 21 ref.
LA : Anglais
EA : This paper presents a novel 4-degrees-of-freedom (4-DOF) haptic master using a electrorheological (ER) fluid which is applicable to minimally invasive surgery (MIS) systems. By adopting a controllable ER fluid, the master can easily generate 4-DOF repulsive forces with the advantages of a simple mechanism and continuous force control capability. The proposed master consists of two actuators: an ER spherical joint for 3-DOF rotational motion and an ER piston device for 1-DOF translational motion. The generated torque/force models are mathematically derived by analyzing the mechanism geometry and using the Bingham characteristics of an ER Fluid. The haptic master is optimally designed and manufactured based on the mathematical torque/force models. The repulsive torque/force responses are experimentally evaluated and expressed by the first-order and second-order dynamic equations for each motion. A sliding mode controller (SMC), which is known to be robust to uncertainties, is then designed and empirically implemented to achieve the desired torque/force trajectories. It is demonstrated by presenting torque/force tracking results of both rotational and translational motions that the proposed 4-DOF ER haptic master integrated with the SMC can provide an effective haptic control performance for MIS applications.
CC : 001B00G07T; 001B00G07M
FD : Robotique; Commande force; Actionneur; Modèle mathématique; Mode glissant; Système 4 degré liberté; Fluide Bingham; Couple mécanique; Piston; Interface haptique; Fluide électrorhéologique
ED : Robotics; Force control; Actuators; Mathematical models; Sliding mode; System with four degrees of freedom; Bingham plastic; Mechanical torque; Pistons; Haptic interfaces; Electrorheological fluid
SD : Robótica; Modo deslizante; Sistema 4 grados libertad; Fluido Bingham; Cupla mecánica; Fluido electroreologico
LO : INIST-26248.354000505137880050
ID : 13-0185333

Links to Exploration step

Pascal:13-0185333

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A 4-DOF haptic master using ER fluid for minimally invasive surgery system application</title>
<author>
<name sortKey="Oh, Jong Seok" sort="Oh, Jong Seok" uniqKey="Oh J" first="Jong-Seok" last="Oh">Jong-Seok Oh</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Inha University</s1>
<s2>Incheon 402-751</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Han, Young Min" sort="Han, Young Min" uniqKey="Han Y" first="Young-Min" last="Han">Young-Min Han</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Automotive Engineering, Ajou Motor College</s1>
<s2>Chungnam 355-769</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lee, Sang Rock" sort="Lee, Sang Rock" uniqKey="Lee S" first="Sang-Rock" last="Lee">Sang-Rock Lee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Inha University</s1>
<s2>Incheon 402-751</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Choi, Seung Bok" sort="Choi, Seung Bok" uniqKey="Choi S" first="Seung-Bok" last="Choi">Seung-Bok Choi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Inha University</s1>
<s2>Incheon 402-751</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0185333</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0185333 INIST</idno>
<idno type="RBID">Pascal:13-0185333</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000199</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A 4-DOF haptic master using ER fluid for minimally invasive surgery system application</title>
<author>
<name sortKey="Oh, Jong Seok" sort="Oh, Jong Seok" uniqKey="Oh J" first="Jong-Seok" last="Oh">Jong-Seok Oh</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Inha University</s1>
<s2>Incheon 402-751</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Han, Young Min" sort="Han, Young Min" uniqKey="Han Y" first="Young-Min" last="Han">Young-Min Han</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Automotive Engineering, Ajou Motor College</s1>
<s2>Chungnam 355-769</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lee, Sang Rock" sort="Lee, Sang Rock" uniqKey="Lee S" first="Sang-Rock" last="Lee">Sang-Rock Lee</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Inha University</s1>
<s2>Incheon 402-751</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Choi, Seung Bok" sort="Choi, Seung Bok" uniqKey="Choi S" first="Seung-Bok" last="Choi">Seung-Bok Choi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Inha University</s1>
<s2>Incheon 402-751</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Smart materials and structures</title>
<title level="j" type="abbreviated">Smart mater. struc.</title>
<idno type="ISSN">0964-1726</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Smart materials and structures</title>
<title level="j" type="abbreviated">Smart mater. struc.</title>
<idno type="ISSN">0964-1726</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actuators</term>
<term>Bingham plastic</term>
<term>Electrorheological fluid</term>
<term>Force control</term>
<term>Haptic interfaces</term>
<term>Mathematical models</term>
<term>Mechanical torque</term>
<term>Pistons</term>
<term>Robotics</term>
<term>Sliding mode</term>
<term>System with four degrees of freedom</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Robotique</term>
<term>Commande force</term>
<term>Actionneur</term>
<term>Modèle mathématique</term>
<term>Mode glissant</term>
<term>Système 4 degré liberté</term>
<term>Fluide Bingham</term>
<term>Couple mécanique</term>
<term>Piston</term>
<term>Interface haptique</term>
<term>Fluide électrorhéologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper presents a novel 4-degrees-of-freedom (4-DOF) haptic master using a electrorheological (ER) fluid which is applicable to minimally invasive surgery (MIS) systems. By adopting a controllable ER fluid, the master can easily generate 4-DOF repulsive forces with the advantages of a simple mechanism and continuous force control capability. The proposed master consists of two actuators: an ER spherical joint for 3-DOF rotational motion and an ER piston device for 1-DOF translational motion. The generated torque/force models are mathematically derived by analyzing the mechanism geometry and using the Bingham characteristics of an ER Fluid. The haptic master is optimally designed and manufactured based on the mathematical torque/force models. The repulsive torque/force responses are experimentally evaluated and expressed by the first-order and second-order dynamic equations for each motion. A sliding mode controller (SMC), which is known to be robust to uncertainties, is then designed and empirically implemented to achieve the desired torque/force trajectories. It is demonstrated by presenting torque/force tracking results of both rotational and translational motions that the proposed 4-DOF ER haptic master integrated with the SMC can provide an effective haptic control performance for MIS applications.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0964-1726</s0>
</fA01>
<fA03 i2="1">
<s0>Smart mater. struc.</s0>
</fA03>
<fA05>
<s2>22</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A 4-DOF haptic master using ER fluid for minimally invasive surgery system application</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OH (Jong-Seok)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HAN (Young-Min)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LEE (Sang-Rock)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHOI (Seung-Bok)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mechanical Engineering, Inha University</s1>
<s2>Incheon 402-751</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Division of Automotive Engineering, Ajou Motor College</s1>
<s2>Chungnam 355-769</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>045004.1-045004.15</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26248</s2>
<s5>354000505137880050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0185333</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Smart materials and structures</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper presents a novel 4-degrees-of-freedom (4-DOF) haptic master using a electrorheological (ER) fluid which is applicable to minimally invasive surgery (MIS) systems. By adopting a controllable ER fluid, the master can easily generate 4-DOF repulsive forces with the advantages of a simple mechanism and continuous force control capability. The proposed master consists of two actuators: an ER spherical joint for 3-DOF rotational motion and an ER piston device for 1-DOF translational motion. The generated torque/force models are mathematically derived by analyzing the mechanism geometry and using the Bingham characteristics of an ER Fluid. The haptic master is optimally designed and manufactured based on the mathematical torque/force models. The repulsive torque/force responses are experimentally evaluated and expressed by the first-order and second-order dynamic equations for each motion. A sliding mode controller (SMC), which is known to be robust to uncertainties, is then designed and empirically implemented to achieve the desired torque/force trajectories. It is demonstrated by presenting torque/force tracking results of both rotational and translational motions that the proposed 4-DOF ER haptic master integrated with the SMC can provide an effective haptic control performance for MIS applications.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G07T</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G07M</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Commande force</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Force control</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Actionneur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Actuators</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Modèle mathématique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Mathematical models</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mode glissant</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Sliding mode</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modo deslizante</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Système 4 degré liberté</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>System with four degrees of freedom</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Sistema 4 grados libertad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Fluide Bingham</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Bingham plastic</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Fluido Bingham</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Couple mécanique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Mechanical torque</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cupla mecánica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Piston</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Pistons</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Interface haptique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Haptic interfaces</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Fluide électrorhéologique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Electrorheological fluid</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Fluido electroreologico</s0>
<s5>16</s5>
</fC03>
<fN21>
<s1>168</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 13-0185333 INIST</NO>
<ET>A 4-DOF haptic master using ER fluid for minimally invasive surgery system application</ET>
<AU>OH (Jong-Seok); HAN (Young-Min); LEE (Sang-Rock); CHOI (Seung-Bok)</AU>
<AF>Department of Mechanical Engineering, Inha University/Incheon 402-751/Corée, République de (1 aut., 3 aut., 4 aut.); Division of Automotive Engineering, Ajou Motor College/Chungnam 355-769/Corée, République de (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Smart materials and structures; ISSN 0964-1726; Royaume-Uni; Da. 2013; Vol. 22; No. 4; 045004.1-045004.15; Bibl. 21 ref.</SO>
<LA>Anglais</LA>
<EA>This paper presents a novel 4-degrees-of-freedom (4-DOF) haptic master using a electrorheological (ER) fluid which is applicable to minimally invasive surgery (MIS) systems. By adopting a controllable ER fluid, the master can easily generate 4-DOF repulsive forces with the advantages of a simple mechanism and continuous force control capability. The proposed master consists of two actuators: an ER spherical joint for 3-DOF rotational motion and an ER piston device for 1-DOF translational motion. The generated torque/force models are mathematically derived by analyzing the mechanism geometry and using the Bingham characteristics of an ER Fluid. The haptic master is optimally designed and manufactured based on the mathematical torque/force models. The repulsive torque/force responses are experimentally evaluated and expressed by the first-order and second-order dynamic equations for each motion. A sliding mode controller (SMC), which is known to be robust to uncertainties, is then designed and empirically implemented to achieve the desired torque/force trajectories. It is demonstrated by presenting torque/force tracking results of both rotational and translational motions that the proposed 4-DOF ER haptic master integrated with the SMC can provide an effective haptic control performance for MIS applications.</EA>
<CC>001B00G07T; 001B00G07M</CC>
<FD>Robotique; Commande force; Actionneur; Modèle mathématique; Mode glissant; Système 4 degré liberté; Fluide Bingham; Couple mécanique; Piston; Interface haptique; Fluide électrorhéologique</FD>
<ED>Robotics; Force control; Actuators; Mathematical models; Sliding mode; System with four degrees of freedom; Bingham plastic; Mechanical torque; Pistons; Haptic interfaces; Electrorheological fluid</ED>
<SD>Robótica; Modo deslizante; Sistema 4 grados libertad; Fluido Bingham; Cupla mecánica; Fluido electroreologico</SD>
<LO>INIST-26248.354000505137880050</LO>
<ID>13-0185333</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000199 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000199 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0185333
   |texte=   A 4-DOF haptic master using ER fluid for minimally invasive surgery system application
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024