Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Scalar-field-guided adaptive shape deformation and animation

Identifieur interne : 000C26 ( PascalFrancis/Checkpoint ); précédent : 000C25; suivant : 000C27

Scalar-field-guided adaptive shape deformation and animation

Auteurs : J. Hua [États-Unis] ; H. Qin

Source :

RBID : Pascal:04-0231408

Descripteurs français

English descriptors

Abstract

In this paper, we propose a novel scalar-field-guided adaptive shape deformation (SFD) technique founded on PDE-based flow constraints and scalar fields of implicit functions. Scalar fields are used as embedding spaces. Upon deformation of the scalar field, a corresponding displacement/velocity field will be generated accordingly, which results in a shape deformation of the embedded object. In our system, the scalar field creation, sketching, and manipulation are both natural and intuitive. The embedded model is further enhanced with self-optimization capability. During the deformation we can also enforce various constraints on embedded models. In addition, this technique can be used to ease the animation design. Our experiments demonstrate that the new SFD technique is powerful, efficient, versatile, and intuitive for shape modeling and animation.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0231408

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Scalar-field-guided adaptive shape deformation and animation</title>
<author>
<name sortKey="Hua, J" sort="Hua, J" uniqKey="Hua J" first="J." last="Hua">J. Hua</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Computer Science State University of New York</s1>
<s2>Stony Brook, NY 11794-4400</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Qin, H" sort="Qin, H" uniqKey="Qin H" first="H." last="Qin">H. Qin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0231408</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0231408 EI</idno>
<idno type="RBID">Pascal:04-0231408</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001007</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000502</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000C26</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Scalar-field-guided adaptive shape deformation and animation</title>
<author>
<name sortKey="Hua, J" sort="Hua, J" uniqKey="Hua J" first="J." last="Hua">J. Hua</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Computer Science State University of New York</s1>
<s2>Stony Brook, NY 11794-4400</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Qin, H" sort="Qin, H" uniqKey="Qin H" first="H." last="Qin">H. Qin</name>
</author>
</analytic>
<series>
<title level="j" type="main">Visual Computer</title>
<title level="j" type="abbreviated">Visual Comput</title>
<idno type="ISSN">0178-2789</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Visual Computer</title>
<title level="j" type="abbreviated">Visual Comput</title>
<idno type="ISSN">0178-2789</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptive systems</term>
<term>Animation</term>
<term>Computational geometry</term>
<term>Computer graphics</term>
<term>Computer simulation</term>
<term>Deformation</term>
<term>FFD techniques</term>
<term>Haptic interfaces</term>
<term>Interaction techiniques</term>
<term>Laplace transforms</term>
<term>Mathematical models</term>
<term>Optimization</term>
<term>Parameter estimation</term>
<term>Scalar fields</term>
<term>Shape deformation</term>
<term>Theory</term>
<term>Topology</term>
<term>Vectors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Théorie</term>
<term>Infographie</term>
<term>Système adaptatif</term>
<term>Topologie</term>
<term>Interface haptique</term>
<term>Déformation</term>
<term>Géométrie algorithmique</term>
<term>Transformation Laplace</term>
<term>Vecteur</term>
<term>Estimation paramètre</term>
<term>Optimisation</term>
<term>Modèle mathématique</term>
<term>Simulation ordinateur</term>
<term>Animation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, we propose a novel scalar-field-guided adaptive shape deformation (SFD) technique founded on PDE-based flow constraints and scalar fields of implicit functions. Scalar fields are used as embedding spaces. Upon deformation of the scalar field, a corresponding displacement/velocity field will be generated accordingly, which results in a shape deformation of the embedded object. In our system, the scalar field creation, sketching, and manipulation are both natural and intuitive. The embedded model is further enhanced with self-optimization capability. During the deformation we can also enforce various constraints on embedded models. In addition, this technique can be used to ease the animation design. Our experiments demonstrate that the new SFD technique is powerful, efficient, versatile, and intuitive for shape modeling and animation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0178-2789</s0>
</fA01>
<fA02 i1="01">
<s0>VICOE5</s0>
</fA02>
<fA03 i2="1">
<s0>Visual Comput</s0>
</fA03>
<fA05>
<s2>20</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Scalar-field-guided adaptive shape deformation and animation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HUA (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>QIN (H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Computer Science State University of New York</s1>
<s2>Stony Brook, NY 11794-4400</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>47-66</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20974</s2>
</fA43>
<fA44>
<s0>A100</s0>
</fA44>
<fA45>
<s0>35 Refs.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0231408</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Visual Computer</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, we propose a novel scalar-field-guided adaptive shape deformation (SFD) technique founded on PDE-based flow constraints and scalar fields of implicit functions. Scalar fields are used as embedding spaces. Upon deformation of the scalar field, a corresponding displacement/velocity field will be generated accordingly, which results in a shape deformation of the embedded object. In our system, the scalar field creation, sketching, and manipulation are both natural and intuitive. The embedded model is further enhanced with self-optimization capability. During the deformation we can also enforce various constraints on embedded models. In addition, this technique can be used to ease the animation design. Our experiments demonstrate that the new SFD technique is powerful, efficient, versatile, and intuitive for shape modeling and animation.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B12</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02C</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001A02B</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03J03</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>001A02E</s0>
</fC02>
<fC02 i1="06" i2="X">
<s0>001A02D</s0>
</fC02>
<fC03 i1="01" i2="1" l="ENG">
<s0>Shape deformation</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="1" l="ENG">
<s0>Scalar fields</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="1" l="ENG">
<s0>Interaction techiniques</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="1" l="ENG">
<s0>FFD techniques</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="1" l="FRE">
<s0>Théorie</s0>
</fC03>
<fC03 i1="05" i2="1" l="ENG">
<s0>Theory</s0>
</fC03>
<fC03 i1="06" i2="1" l="FRE">
<s0>Infographie</s0>
</fC03>
<fC03 i1="06" i2="1" l="ENG">
<s0>Computer graphics</s0>
</fC03>
<fC03 i1="07" i2="1" l="FRE">
<s0>Système adaptatif</s0>
</fC03>
<fC03 i1="07" i2="1" l="ENG">
<s0>Adaptive systems</s0>
</fC03>
<fC03 i1="08" i2="1" l="FRE">
<s0>Topologie</s0>
</fC03>
<fC03 i1="08" i2="1" l="ENG">
<s0>Topology</s0>
</fC03>
<fC03 i1="09" i2="1" l="FRE">
<s0>Interface haptique</s0>
</fC03>
<fC03 i1="09" i2="1" l="ENG">
<s0>Haptic interfaces</s0>
</fC03>
<fC03 i1="10" i2="1" l="FRE">
<s0>Déformation</s0>
</fC03>
<fC03 i1="10" i2="1" l="ENG">
<s0>Deformation</s0>
</fC03>
<fC03 i1="11" i2="1" l="FRE">
<s0>Géométrie algorithmique</s0>
</fC03>
<fC03 i1="11" i2="1" l="ENG">
<s0>Computational geometry</s0>
</fC03>
<fC03 i1="12" i2="1" l="FRE">
<s0>Transformation Laplace</s0>
</fC03>
<fC03 i1="12" i2="1" l="ENG">
<s0>Laplace transforms</s0>
</fC03>
<fC03 i1="13" i2="1" l="FRE">
<s0>Vecteur</s0>
</fC03>
<fC03 i1="13" i2="1" l="ENG">
<s0>Vectors</s0>
</fC03>
<fC03 i1="14" i2="1" l="FRE">
<s0>Estimation paramètre</s0>
</fC03>
<fC03 i1="14" i2="1" l="ENG">
<s0>Parameter estimation</s0>
</fC03>
<fC03 i1="15" i2="1" l="FRE">
<s0>Optimisation</s0>
</fC03>
<fC03 i1="15" i2="1" l="ENG">
<s0>Optimization</s0>
</fC03>
<fC03 i1="16" i2="1" l="FRE">
<s0>Modèle mathématique</s0>
</fC03>
<fC03 i1="16" i2="1" l="ENG">
<s0>Mathematical models</s0>
</fC03>
<fC03 i1="17" i2="1" l="FRE">
<s0>Simulation ordinateur</s0>
</fC03>
<fC03 i1="17" i2="1" l="ENG">
<s0>Computer simulation</s0>
</fC03>
<fC03 i1="18" i2="1" l="FRE">
<s0>Animation</s0>
<s3>P</s3>
</fC03>
<fC03 i1="18" i2="1" l="ENG">
<s0>Animation</s0>
<s3>P</s3>
</fC03>
<fN21>
<s1>152</s1>
</fN21>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Qin, H" sort="Qin, H" uniqKey="Qin H" first="H." last="Qin">H. Qin</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Hua, J" sort="Hua, J" uniqKey="Hua J" first="J." last="Hua">J. Hua</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C26 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000C26 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:04-0231408
   |texte=   Scalar-field-guided adaptive shape deformation and animation
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024