Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Series Elastic Actuators for legged robots

Identifieur interne : 000C19 ( PascalFrancis/Checkpoint ); précédent : 000C18; suivant : 000C20

Series Elastic Actuators for legged robots

Auteurs : Jerry E. Pratt [États-Unis] ; Benjamin T. Krupp [États-Unis]

Source :

RBID : Pascal:05-0038010

Descripteurs français

English descriptors

Abstract

Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better". A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke's Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0038010

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Series Elastic Actuators for legged robots</title>
<author>
<name sortKey="Pratt, Jerry E" sort="Pratt, Jerry E" uniqKey="Pratt J" first="Jerry E." last="Pratt">Jerry E. Pratt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Human and Machine Cognition, 40 South Alcaniz Street</s1>
<s2>Pensacola, FL, 32502</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Pensacola, FL, 32502</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krupp, Benjamin T" sort="Krupp, Benjamin T" uniqKey="Krupp B" first="Benjamin T." last="Krupp">Benjamin T. Krupp</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Yobotics, Inc, 1776 Mentor Avenue</s1>
<s2>Cincinnati, OH, 45212</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Cincinnati, OH, 45212</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0038010</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 05-0038010 INIST</idno>
<idno type="RBID">Pascal:05-0038010</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000F12</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000596</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000C19</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Series Elastic Actuators for legged robots</title>
<author>
<name sortKey="Pratt, Jerry E" sort="Pratt, Jerry E" uniqKey="Pratt J" first="Jerry E." last="Pratt">Jerry E. Pratt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Human and Machine Cognition, 40 South Alcaniz Street</s1>
<s2>Pensacola, FL, 32502</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Pensacola, FL, 32502</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krupp, Benjamin T" sort="Krupp, Benjamin T" uniqKey="Krupp B" first="Benjamin T." last="Krupp">Benjamin T. Krupp</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Yobotics, Inc, 1776 Mentor Avenue</s1>
<s2>Cincinnati, OH, 45212</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Cincinnati, OH, 45212</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">SPIE proceedings series</title>
<idno type="ISSN">1017-2653</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">SPIE proceedings series</title>
<idno type="ISSN">1017-2653</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actuator</term>
<term>Adaptive method</term>
<term>Bandwidth</term>
<term>Control loop</term>
<term>Fidelity</term>
<term>Force control</term>
<term>Friction</term>
<term>Gear</term>
<term>Machine design</term>
<term>Moving robot</term>
<term>Position measurement</term>
<term>Position sensor</term>
<term>Robotics</term>
<term>Tolerance</term>
<term>Unmanned ground vehicle</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Robot mobile</term>
<term>Robotique</term>
<term>Largeur bande</term>
<term>Actionneur</term>
<term>Commande force</term>
<term>Fidélité</term>
<term>Frottement</term>
<term>Conception machine</term>
<term>Engrenage</term>
<term>Capteur position</term>
<term>Mesure position</term>
<term>Boucle commande</term>
<term>Tolérance</term>
<term>Méthode adaptative</term>
<term>Engin terrestre autonome</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Robotique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better". A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke's Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1017-2653</s0>
</fA01>
<fA05>
<s2>5422</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Series Elastic Actuators for legged robots</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Unmanned ground vehicle technology VI : Orlando FL, 13-15 April 2004</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>PRATT (Jerry E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KRUPP (Benjamin T.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>GERHART (Grant R.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SHOEMAKER (Chuck M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>GAGE (Douglas W.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute for Human and Machine Cognition, 40 South Alcaniz Street</s1>
<s2>Pensacola, FL, 32502</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Yobotics, Inc, 1776 Mentor Avenue</s1>
<s2>Cincinnati, OH, 45212</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>International Society for Optical Engineering</s1>
<s2>Bellingham WA</s2>
<s3>USA</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>135-144</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>0-8194-5345-5</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000124384960130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>9 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0038010</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>SPIE proceedings series</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better". A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke's Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Robot mobile</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Moving robot</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Robot móvil</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Largeur bande</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Bandwidth</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Anchura banda</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Actionneur</s0>
<s5>18</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Actuator</s0>
<s5>18</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Accionador</s0>
<s5>18</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Commande force</s0>
<s5>19</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Force control</s0>
<s5>19</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Control fuerza</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Fidélité</s0>
<s5>20</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Fidelity</s0>
<s5>20</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Fidelidad</s0>
<s5>20</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Frottement</s0>
<s5>21</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Friction</s0>
<s5>21</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Frotamiento</s0>
<s5>21</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Conception machine</s0>
<s5>22</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Machine design</s0>
<s5>22</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Concepción máquina</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Engrenage</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Gear</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Engranaje</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Capteur position</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Position sensor</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Sensor posición</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Mesure position</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Position measurement</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Medición posición</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Boucle commande</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Control loop</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Bucle control</s0>
<s5>26</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Tolérance</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Tolerance</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Tolerancia</s0>
<s5>27</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Méthode adaptative</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Adaptive method</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Método adaptativo</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Engin terrestre autonome</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Unmanned ground vehicle</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Máquina autónoma terrestre</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>017</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Unmanned ground vehicle technology. Conference</s1>
<s2>6</s2>
<s3>Orlando FL USA</s3>
<s4>2004-04-13</s4>
</fA30>
</pR>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Pratt, Jerry E" sort="Pratt, Jerry E" uniqKey="Pratt J" first="Jerry E." last="Pratt">Jerry E. Pratt</name>
</noRegion>
<name sortKey="Krupp, Benjamin T" sort="Krupp, Benjamin T" uniqKey="Krupp B" first="Benjamin T." last="Krupp">Benjamin T. Krupp</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000C19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:05-0038010
   |texte=   Series Elastic Actuators for legged robots
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024