Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Augmented reality user interface for an atomic force microscope-based nanorobotic system

Identifieur interne : 000A34 ( PascalFrancis/Checkpoint ); précédent : 000A33; suivant : 000A35

Augmented reality user interface for an atomic force microscope-based nanorobotic system

Auteurs : Wolfgang Vogl [Allemagne] ; Bernice Kai-Lam Ma [États-Unis] ; Metin Sitti [États-Unis]

Source :

RBID : Pascal:06-0424730

Descripteurs français

English descriptors

Abstract

A real-time augmented reality (AR) user interface for nanoscale interaction and manipulation applications using an atomic force microscope (AFM) is presented. Nanoscale three-dimensional (3-D) topography and force information sensed by an AFM probe are fed back to a user through a simulated AR system. The sample surface is modeled with a B-spline-based geometry model, upon which a collision detection algorithm determines whether and how the spherical AFM tip penetrates the surface. Based on these results, the induced surface deformations are simulated using continuum micro/nanoforce and Maugis-Dug-dale elastic contact mechanics models, and 3-D decoupled force feedback information is obtained in real time. The simulated information is then blended in real time with the force measurements of the AFM in an AR human machine interface, comprising a computer graphics environment and a haptic interface. Accuracy, usability, and reliability of the proposed AR user interface is tested by experiments for three tasks: positioning the AFM probe tip close to a surface, just in contact with a surface, or below a surface by elastically indenting. Results of these tests showed the performance of the proposed user interface. This user interface would be critical for many nanorobotic applications in biotechnology, nanodevice prototyping, and nanotechnology education.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0424730

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Augmented reality user interface for an atomic force microscope-based nanorobotic system</title>
<author>
<name sortKey="Vogl, Wolfgang" sort="Vogl, Wolfgang" uniqKey="Vogl W" first="Wolfgang" last="Vogl">Wolfgang Vogl</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>IWB Institute for Machine Tools and Industrial Man agement, Technical University of Munich</s1>
<s2>Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Bernice Kai Lam" sort="Ma, Bernice Kai Lam" uniqKey="Ma B" first="Bernice Kai-Lam" last="Ma">Bernice Kai-Lam Ma</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Computer Science Department, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sitti, Metin" sort="Sitti, Metin" uniqKey="Sitti M" first="Metin" last="Sitti">Metin Sitti</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>NanoRobotics Laboratory, Mechanical Engineering Department, Robotics Institute, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0424730</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0424730 INIST</idno>
<idno type="RBID">Pascal:06-0424730</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000C68</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000838</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000A34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Augmented reality user interface for an atomic force microscope-based nanorobotic system</title>
<author>
<name sortKey="Vogl, Wolfgang" sort="Vogl, Wolfgang" uniqKey="Vogl W" first="Wolfgang" last="Vogl">Wolfgang Vogl</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>IWB Institute for Machine Tools and Industrial Man agement, Technical University of Munich</s1>
<s2>Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Bernice Kai Lam" sort="Ma, Bernice Kai Lam" uniqKey="Ma B" first="Bernice Kai-Lam" last="Ma">Bernice Kai-Lam Ma</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Computer Science Department, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sitti, Metin" sort="Sitti, Metin" uniqKey="Sitti M" first="Metin" last="Sitti">Metin Sitti</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>NanoRobotics Laboratory, Mechanical Engineering Department, Robotics Institute, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on nanotechnology</title>
<idno type="ISSN">1536-125X</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on nanotechnology</title>
<idno type="ISSN">1536-125X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithm</term>
<term>Atomic force microscopy</term>
<term>Augmented reality</term>
<term>Computer graphics</term>
<term>Contact surface</term>
<term>Feedback regulation</term>
<term>Force measurement</term>
<term>Mechanical contact</term>
<term>Nanomanipulation</term>
<term>Nanotechnology</term>
<term>Performance evaluation</term>
<term>Reliability</term>
<term>Surface deformation</term>
<term>Three dimensional model</term>
<term>User interface</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Réalité augmentée</term>
<term>Interface utilisateur</term>
<term>Microscopie force atomique</term>
<term>Modèle 3 dimensions</term>
<term>Algorithme</term>
<term>Déformation superficielle</term>
<term>Contact mécanique</term>
<term>Rétroaction</term>
<term>Mesure force</term>
<term>Infographie</term>
<term>Fiabilité</term>
<term>Surface contact</term>
<term>Evaluation performance</term>
<term>Nanotechnologie</term>
<term>0779L</term>
<term>Nanomanipulation</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Nanotechnologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A real-time augmented reality (AR) user interface for nanoscale interaction and manipulation applications using an atomic force microscope (AFM) is presented. Nanoscale three-dimensional (3-D) topography and force information sensed by an AFM probe are fed back to a user through a simulated AR system. The sample surface is modeled with a B-spline-based geometry model, upon which a collision detection algorithm determines whether and how the spherical AFM tip penetrates the surface. Based on these results, the induced surface deformations are simulated using continuum micro/nanoforce and Maugis-Dug-dale elastic contact mechanics models, and 3-D decoupled force feedback information is obtained in real time. The simulated information is then blended in real time with the force measurements of the AFM in an AR human machine interface, comprising a computer graphics environment and a haptic interface. Accuracy, usability, and reliability of the proposed AR user interface is tested by experiments for three tasks: positioning the AFM probe tip close to a surface, just in contact with a surface, or below a surface by elastically indenting. Results of these tests showed the performance of the proposed user interface. This user interface would be critical for many nanorobotic applications in biotechnology, nanodevice prototyping, and nanotechnology education.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="2">
<s0>1536-125X</s0>
</fA01>
<fA05>
<s2>5</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Augmented reality user interface for an atomic force microscope-based nanorobotic system</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VOGL (Wolfgang)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MA (Bernice Kai-Lam)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SITTI (Metin)</s1>
</fA11>
<fA14 i1="01">
<s1>IWB Institute for Machine Tools and Industrial Man agement, Technical University of Munich</s1>
<s2>Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Computer Science Department, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NanoRobotics Laboratory, Mechanical Engineering Department, Robotics Institute, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>397-406</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27310</s2>
<s5>354000157075410120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0424730</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="2">
<s0>IEEE transactions on nanotechnology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A real-time augmented reality (AR) user interface for nanoscale interaction and manipulation applications using an atomic force microscope (AFM) is presented. Nanoscale three-dimensional (3-D) topography and force information sensed by an AFM probe are fed back to a user through a simulated AR system. The sample surface is modeled with a B-spline-based geometry model, upon which a collision detection algorithm determines whether and how the spherical AFM tip penetrates the surface. Based on these results, the induced surface deformations are simulated using continuum micro/nanoforce and Maugis-Dug-dale elastic contact mechanics models, and 3-D decoupled force feedback information is obtained in real time. The simulated information is then blended in real time with the force measurements of the AFM in an AR human machine interface, comprising a computer graphics environment and a haptic interface. Accuracy, usability, and reliability of the proposed AR user interface is tested by experiments for three tasks: positioning the AFM probe tip close to a surface, just in contact with a surface, or below a surface by elastically indenting. Results of these tests showed the performance of the proposed user interface. This user interface would be critical for many nanorobotic applications in biotechnology, nanodevice prototyping, and nanotechnology education.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03J03</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G79L</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Réalité augmentée</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Augmented reality</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Realidad aumentada</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>User interface</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Modèle 3 dimensions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Three dimensional model</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Modelo 3 dimensiones</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Algorithme</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Algorithm</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Algoritmo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Déformation superficielle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Surface deformation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Deformación superficial</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Contact mécanique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Mechanical contact</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Contacto mecánico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Rétroaction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Feedback regulation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Retroacción</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Mesure force</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Force measurement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Medición esfuerzo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Infographie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Computer graphics</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Gráfico computadora</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Fiabilité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Reliability</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Fiabilidad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Surface contact</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Contact surface</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Superficie contacto</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Nanotechnologie</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Nanotechnology</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Nanotecnología</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>0779L</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nanomanipulation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Nanomanipulation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>282</s1>
</fN21>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>États-Unis</li>
</country>
<region>
<li>Bavière</li>
<li>District de Haute-Bavière</li>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Munich</li>
</settlement>
<orgName>
<li>Université Carnegie-Mellon</li>
<li>Université Louis-et-Maximilien de Munich</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Bavière">
<name sortKey="Vogl, Wolfgang" sort="Vogl, Wolfgang" uniqKey="Vogl W" first="Wolfgang" last="Vogl">Wolfgang Vogl</name>
</region>
</country>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Ma, Bernice Kai Lam" sort="Ma, Bernice Kai Lam" uniqKey="Ma B" first="Bernice Kai-Lam" last="Ma">Bernice Kai-Lam Ma</name>
</region>
<name sortKey="Sitti, Metin" sort="Sitti, Metin" uniqKey="Sitti M" first="Metin" last="Sitti">Metin Sitti</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A34 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000A34 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:06-0424730
   |texte=   Augmented reality user interface for an atomic force microscope-based nanorobotic system
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024