Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Augmented reality user interface for an atomic force microscope-based nanorobotic system

Identifieur interne : 000C68 ( PascalFrancis/Corpus ); précédent : 000C67; suivant : 000C69

Augmented reality user interface for an atomic force microscope-based nanorobotic system

Auteurs : Wolfgang Vogl ; Bernice Kai-Lam Ma ; Metin Sitti

Source :

RBID : Pascal:06-0424730

Descripteurs français

English descriptors

Abstract

A real-time augmented reality (AR) user interface for nanoscale interaction and manipulation applications using an atomic force microscope (AFM) is presented. Nanoscale three-dimensional (3-D) topography and force information sensed by an AFM probe are fed back to a user through a simulated AR system. The sample surface is modeled with a B-spline-based geometry model, upon which a collision detection algorithm determines whether and how the spherical AFM tip penetrates the surface. Based on these results, the induced surface deformations are simulated using continuum micro/nanoforce and Maugis-Dug-dale elastic contact mechanics models, and 3-D decoupled force feedback information is obtained in real time. The simulated information is then blended in real time with the force measurements of the AFM in an AR human machine interface, comprising a computer graphics environment and a haptic interface. Accuracy, usability, and reliability of the proposed AR user interface is tested by experiments for three tasks: positioning the AFM probe tip close to a surface, just in contact with a surface, or below a surface by elastically indenting. Results of these tests showed the performance of the proposed user interface. This user interface would be critical for many nanorobotic applications in biotechnology, nanodevice prototyping, and nanotechnology education.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  2    @0 1536-125X
A05       @2 5
A06       @2 4
A08 01  1  ENG  @1 Augmented reality user interface for an atomic force microscope-based nanorobotic system
A11 01  1    @1 VOGL (Wolfgang)
A11 02  1    @1 MA (Bernice Kai-Lam)
A11 03  1    @1 SITTI (Metin)
A14 01      @1 IWB Institute for Machine Tools and Industrial Man agement, Technical University of Munich @2 Munich @3 DEU @Z 1 aut.
A14 02      @1 Computer Science Department, Carnegie Mellon University @2 Pittsburgh, PA 15213 @3 USA @Z 2 aut.
A14 03      @1 NanoRobotics Laboratory, Mechanical Engineering Department, Robotics Institute, Carnegie Mellon University @2 Pittsburgh, PA 15213 @3 USA @Z 3 aut.
A20       @1 397-406
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 27310 @5 354000157075410120
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 20 ref.
A47 01  1    @0 06-0424730
A60       @1 P
A61       @0 A
A64 01  2    @0 IEEE transactions on nanotechnology
A66 01      @0 USA
C01 01    ENG  @0 A real-time augmented reality (AR) user interface for nanoscale interaction and manipulation applications using an atomic force microscope (AFM) is presented. Nanoscale three-dimensional (3-D) topography and force information sensed by an AFM probe are fed back to a user through a simulated AR system. The sample surface is modeled with a B-spline-based geometry model, upon which a collision detection algorithm determines whether and how the spherical AFM tip penetrates the surface. Based on these results, the induced surface deformations are simulated using continuum micro/nanoforce and Maugis-Dug-dale elastic contact mechanics models, and 3-D decoupled force feedback information is obtained in real time. The simulated information is then blended in real time with the force measurements of the AFM in an AR human machine interface, comprising a computer graphics environment and a haptic interface. Accuracy, usability, and reliability of the proposed AR user interface is tested by experiments for three tasks: positioning the AFM probe tip close to a surface, just in contact with a surface, or below a surface by elastically indenting. Results of these tests showed the performance of the proposed user interface. This user interface would be critical for many nanorobotic applications in biotechnology, nanodevice prototyping, and nanotechnology education.
C02 01  X    @0 001D03J03
C02 02  3    @0 001B00G79L
C03 01  X  FRE  @0 Réalité augmentée @5 01
C03 01  X  ENG  @0 Augmented reality @5 01
C03 01  X  SPA  @0 Realidad aumentada @5 01
C03 02  X  FRE  @0 Interface utilisateur @5 02
C03 02  X  ENG  @0 User interface @5 02
C03 02  X  SPA  @0 Interfase usuario @5 02
C03 03  X  FRE  @0 Microscopie force atomique @5 03
C03 03  X  ENG  @0 Atomic force microscopy @5 03
C03 03  X  SPA  @0 Microscopía fuerza atómica @5 03
C03 04  X  FRE  @0 Modèle 3 dimensions @5 04
C03 04  X  ENG  @0 Three dimensional model @5 04
C03 04  X  SPA  @0 Modelo 3 dimensiones @5 04
C03 05  X  FRE  @0 Algorithme @5 05
C03 05  X  ENG  @0 Algorithm @5 05
C03 05  X  SPA  @0 Algoritmo @5 05
C03 06  X  FRE  @0 Déformation superficielle @5 06
C03 06  X  ENG  @0 Surface deformation @5 06
C03 06  X  SPA  @0 Deformación superficial @5 06
C03 07  X  FRE  @0 Contact mécanique @5 07
C03 07  X  ENG  @0 Mechanical contact @5 07
C03 07  X  SPA  @0 Contacto mecánico @5 07
C03 08  X  FRE  @0 Rétroaction @5 08
C03 08  X  ENG  @0 Feedback regulation @5 08
C03 08  X  SPA  @0 Retroacción @5 08
C03 09  X  FRE  @0 Mesure force @5 09
C03 09  X  ENG  @0 Force measurement @5 09
C03 09  X  SPA  @0 Medición esfuerzo @5 09
C03 10  X  FRE  @0 Infographie @5 10
C03 10  X  ENG  @0 Computer graphics @5 10
C03 10  X  SPA  @0 Gráfico computadora @5 10
C03 11  X  FRE  @0 Fiabilité @5 11
C03 11  X  ENG  @0 Reliability @5 11
C03 11  X  SPA  @0 Fiabilidad @5 11
C03 12  X  FRE  @0 Surface contact @5 12
C03 12  X  ENG  @0 Contact surface @5 12
C03 12  X  SPA  @0 Superficie contacto @5 12
C03 13  X  FRE  @0 Evaluation performance @5 13
C03 13  X  ENG  @0 Performance evaluation @5 13
C03 13  X  SPA  @0 Evaluación prestación @5 13
C03 14  X  FRE  @0 Nanotechnologie @5 15
C03 14  X  ENG  @0 Nanotechnology @5 15
C03 14  X  SPA  @0 Nanotecnología @5 15
C03 15  X  FRE  @0 0779L @2 PAC @4 INC @5 83
C03 16  X  FRE  @0 Nanomanipulation @4 CD @5 96
C03 16  X  ENG  @0 Nanomanipulation @4 CD @5 96
N21       @1 282

Format Inist (serveur)

NO : PASCAL 06-0424730 INIST
ET : Augmented reality user interface for an atomic force microscope-based nanorobotic system
AU : VOGL (Wolfgang); MA (Bernice Kai-Lam); SITTI (Metin)
AF : IWB Institute for Machine Tools and Industrial Man agement, Technical University of Munich/Munich/Allemagne (1 aut.); Computer Science Department, Carnegie Mellon University/Pittsburgh, PA 15213/Etats-Unis (2 aut.); NanoRobotics Laboratory, Mechanical Engineering Department, Robotics Institute, Carnegie Mellon University/Pittsburgh, PA 15213/Etats-Unis (3 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on nanotechnology; ISSN 1536-125X; Etats-Unis; Da. 2006; Vol. 5; No. 4; Pp. 397-406; Bibl. 20 ref.
LA : Anglais
EA : A real-time augmented reality (AR) user interface for nanoscale interaction and manipulation applications using an atomic force microscope (AFM) is presented. Nanoscale three-dimensional (3-D) topography and force information sensed by an AFM probe are fed back to a user through a simulated AR system. The sample surface is modeled with a B-spline-based geometry model, upon which a collision detection algorithm determines whether and how the spherical AFM tip penetrates the surface. Based on these results, the induced surface deformations are simulated using continuum micro/nanoforce and Maugis-Dug-dale elastic contact mechanics models, and 3-D decoupled force feedback information is obtained in real time. The simulated information is then blended in real time with the force measurements of the AFM in an AR human machine interface, comprising a computer graphics environment and a haptic interface. Accuracy, usability, and reliability of the proposed AR user interface is tested by experiments for three tasks: positioning the AFM probe tip close to a surface, just in contact with a surface, or below a surface by elastically indenting. Results of these tests showed the performance of the proposed user interface. This user interface would be critical for many nanorobotic applications in biotechnology, nanodevice prototyping, and nanotechnology education.
CC : 001D03J03; 001B00G79L
FD : Réalité augmentée; Interface utilisateur; Microscopie force atomique; Modèle 3 dimensions; Algorithme; Déformation superficielle; Contact mécanique; Rétroaction; Mesure force; Infographie; Fiabilité; Surface contact; Evaluation performance; Nanotechnologie; 0779L; Nanomanipulation
ED : Augmented reality; User interface; Atomic force microscopy; Three dimensional model; Algorithm; Surface deformation; Mechanical contact; Feedback regulation; Force measurement; Computer graphics; Reliability; Contact surface; Performance evaluation; Nanotechnology; Nanomanipulation
SD : Realidad aumentada; Interfase usuario; Microscopía fuerza atómica; Modelo 3 dimensiones; Algoritmo; Deformación superficial; Contacto mecánico; Retroacción; Medición esfuerzo; Gráfico computadora; Fiabilidad; Superficie contacto; Evaluación prestación; Nanotecnología
LO : INIST-27310.354000157075410120
ID : 06-0424730

Links to Exploration step

Pascal:06-0424730

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Augmented reality user interface for an atomic force microscope-based nanorobotic system</title>
<author>
<name sortKey="Vogl, Wolfgang" sort="Vogl, Wolfgang" uniqKey="Vogl W" first="Wolfgang" last="Vogl">Wolfgang Vogl</name>
<affiliation>
<inist:fA14 i1="01">
<s1>IWB Institute for Machine Tools and Industrial Man agement, Technical University of Munich</s1>
<s2>Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ma, Bernice Kai Lam" sort="Ma, Bernice Kai Lam" uniqKey="Ma B" first="Bernice Kai-Lam" last="Ma">Bernice Kai-Lam Ma</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Computer Science Department, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sitti, Metin" sort="Sitti, Metin" uniqKey="Sitti M" first="Metin" last="Sitti">Metin Sitti</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NanoRobotics Laboratory, Mechanical Engineering Department, Robotics Institute, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0424730</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0424730 INIST</idno>
<idno type="RBID">Pascal:06-0424730</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000C68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Augmented reality user interface for an atomic force microscope-based nanorobotic system</title>
<author>
<name sortKey="Vogl, Wolfgang" sort="Vogl, Wolfgang" uniqKey="Vogl W" first="Wolfgang" last="Vogl">Wolfgang Vogl</name>
<affiliation>
<inist:fA14 i1="01">
<s1>IWB Institute for Machine Tools and Industrial Man agement, Technical University of Munich</s1>
<s2>Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ma, Bernice Kai Lam" sort="Ma, Bernice Kai Lam" uniqKey="Ma B" first="Bernice Kai-Lam" last="Ma">Bernice Kai-Lam Ma</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Computer Science Department, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sitti, Metin" sort="Sitti, Metin" uniqKey="Sitti M" first="Metin" last="Sitti">Metin Sitti</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NanoRobotics Laboratory, Mechanical Engineering Department, Robotics Institute, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on nanotechnology</title>
<idno type="ISSN">1536-125X</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on nanotechnology</title>
<idno type="ISSN">1536-125X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithm</term>
<term>Atomic force microscopy</term>
<term>Augmented reality</term>
<term>Computer graphics</term>
<term>Contact surface</term>
<term>Feedback regulation</term>
<term>Force measurement</term>
<term>Mechanical contact</term>
<term>Nanomanipulation</term>
<term>Nanotechnology</term>
<term>Performance evaluation</term>
<term>Reliability</term>
<term>Surface deformation</term>
<term>Three dimensional model</term>
<term>User interface</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Réalité augmentée</term>
<term>Interface utilisateur</term>
<term>Microscopie force atomique</term>
<term>Modèle 3 dimensions</term>
<term>Algorithme</term>
<term>Déformation superficielle</term>
<term>Contact mécanique</term>
<term>Rétroaction</term>
<term>Mesure force</term>
<term>Infographie</term>
<term>Fiabilité</term>
<term>Surface contact</term>
<term>Evaluation performance</term>
<term>Nanotechnologie</term>
<term>0779L</term>
<term>Nanomanipulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A real-time augmented reality (AR) user interface for nanoscale interaction and manipulation applications using an atomic force microscope (AFM) is presented. Nanoscale three-dimensional (3-D) topography and force information sensed by an AFM probe are fed back to a user through a simulated AR system. The sample surface is modeled with a B-spline-based geometry model, upon which a collision detection algorithm determines whether and how the spherical AFM tip penetrates the surface. Based on these results, the induced surface deformations are simulated using continuum micro/nanoforce and Maugis-Dug-dale elastic contact mechanics models, and 3-D decoupled force feedback information is obtained in real time. The simulated information is then blended in real time with the force measurements of the AFM in an AR human machine interface, comprising a computer graphics environment and a haptic interface. Accuracy, usability, and reliability of the proposed AR user interface is tested by experiments for three tasks: positioning the AFM probe tip close to a surface, just in contact with a surface, or below a surface by elastically indenting. Results of these tests showed the performance of the proposed user interface. This user interface would be critical for many nanorobotic applications in biotechnology, nanodevice prototyping, and nanotechnology education.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="2">
<s0>1536-125X</s0>
</fA01>
<fA05>
<s2>5</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Augmented reality user interface for an atomic force microscope-based nanorobotic system</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VOGL (Wolfgang)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MA (Bernice Kai-Lam)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SITTI (Metin)</s1>
</fA11>
<fA14 i1="01">
<s1>IWB Institute for Machine Tools and Industrial Man agement, Technical University of Munich</s1>
<s2>Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Computer Science Department, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NanoRobotics Laboratory, Mechanical Engineering Department, Robotics Institute, Carnegie Mellon University</s1>
<s2>Pittsburgh, PA 15213</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>397-406</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27310</s2>
<s5>354000157075410120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0424730</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="2">
<s0>IEEE transactions on nanotechnology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A real-time augmented reality (AR) user interface for nanoscale interaction and manipulation applications using an atomic force microscope (AFM) is presented. Nanoscale three-dimensional (3-D) topography and force information sensed by an AFM probe are fed back to a user through a simulated AR system. The sample surface is modeled with a B-spline-based geometry model, upon which a collision detection algorithm determines whether and how the spherical AFM tip penetrates the surface. Based on these results, the induced surface deformations are simulated using continuum micro/nanoforce and Maugis-Dug-dale elastic contact mechanics models, and 3-D decoupled force feedback information is obtained in real time. The simulated information is then blended in real time with the force measurements of the AFM in an AR human machine interface, comprising a computer graphics environment and a haptic interface. Accuracy, usability, and reliability of the proposed AR user interface is tested by experiments for three tasks: positioning the AFM probe tip close to a surface, just in contact with a surface, or below a surface by elastically indenting. Results of these tests showed the performance of the proposed user interface. This user interface would be critical for many nanorobotic applications in biotechnology, nanodevice prototyping, and nanotechnology education.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03J03</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G79L</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Réalité augmentée</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Augmented reality</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Realidad aumentada</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>User interface</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Modèle 3 dimensions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Three dimensional model</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Modelo 3 dimensiones</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Algorithme</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Algorithm</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Algoritmo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Déformation superficielle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Surface deformation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Deformación superficial</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Contact mécanique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Mechanical contact</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Contacto mecánico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Rétroaction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Feedback regulation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Retroacción</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Mesure force</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Force measurement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Medición esfuerzo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Infographie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Computer graphics</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Gráfico computadora</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Fiabilité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Reliability</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Fiabilidad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Surface contact</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Contact surface</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Superficie contacto</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Nanotechnologie</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Nanotechnology</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Nanotecnología</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>0779L</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nanomanipulation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Nanomanipulation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>282</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 06-0424730 INIST</NO>
<ET>Augmented reality user interface for an atomic force microscope-based nanorobotic system</ET>
<AU>VOGL (Wolfgang); MA (Bernice Kai-Lam); SITTI (Metin)</AU>
<AF>IWB Institute for Machine Tools and Industrial Man agement, Technical University of Munich/Munich/Allemagne (1 aut.); Computer Science Department, Carnegie Mellon University/Pittsburgh, PA 15213/Etats-Unis (2 aut.); NanoRobotics Laboratory, Mechanical Engineering Department, Robotics Institute, Carnegie Mellon University/Pittsburgh, PA 15213/Etats-Unis (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on nanotechnology; ISSN 1536-125X; Etats-Unis; Da. 2006; Vol. 5; No. 4; Pp. 397-406; Bibl. 20 ref.</SO>
<LA>Anglais</LA>
<EA>A real-time augmented reality (AR) user interface for nanoscale interaction and manipulation applications using an atomic force microscope (AFM) is presented. Nanoscale three-dimensional (3-D) topography and force information sensed by an AFM probe are fed back to a user through a simulated AR system. The sample surface is modeled with a B-spline-based geometry model, upon which a collision detection algorithm determines whether and how the spherical AFM tip penetrates the surface. Based on these results, the induced surface deformations are simulated using continuum micro/nanoforce and Maugis-Dug-dale elastic contact mechanics models, and 3-D decoupled force feedback information is obtained in real time. The simulated information is then blended in real time with the force measurements of the AFM in an AR human machine interface, comprising a computer graphics environment and a haptic interface. Accuracy, usability, and reliability of the proposed AR user interface is tested by experiments for three tasks: positioning the AFM probe tip close to a surface, just in contact with a surface, or below a surface by elastically indenting. Results of these tests showed the performance of the proposed user interface. This user interface would be critical for many nanorobotic applications in biotechnology, nanodevice prototyping, and nanotechnology education.</EA>
<CC>001D03J03; 001B00G79L</CC>
<FD>Réalité augmentée; Interface utilisateur; Microscopie force atomique; Modèle 3 dimensions; Algorithme; Déformation superficielle; Contact mécanique; Rétroaction; Mesure force; Infographie; Fiabilité; Surface contact; Evaluation performance; Nanotechnologie; 0779L; Nanomanipulation</FD>
<ED>Augmented reality; User interface; Atomic force microscopy; Three dimensional model; Algorithm; Surface deformation; Mechanical contact; Feedback regulation; Force measurement; Computer graphics; Reliability; Contact surface; Performance evaluation; Nanotechnology; Nanomanipulation</ED>
<SD>Realidad aumentada; Interfase usuario; Microscopía fuerza atómica; Modelo 3 dimensiones; Algoritmo; Deformación superficial; Contacto mecánico; Retroacción; Medición esfuerzo; Gráfico computadora; Fiabilidad; Superficie contacto; Evaluación prestación; Nanotecnología</SD>
<LO>INIST-27310.354000157075410120</LO>
<ID>06-0424730</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000C68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0424730
   |texte=   Augmented reality user interface for an atomic force microscope-based nanorobotic system
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024