Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions

Identifieur interne : 000076 ( PascalFrancis/Checkpoint ); précédent : 000075; suivant : 000077

An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions

Auteurs : Alireza Karimi [Iran] ; Mahdi Navidbakhsh [Iran]

Source :

RBID : Pascal:14-0176869

Descripteurs français

English descriptors

Abstract

There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0176869

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions</title>
<author>
<name sortKey="Karimi, Alireza" sort="Karimi, Alireza" uniqKey="Karimi A" first="Alireza" last="Karimi">Alireza Karimi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology</s1>
<s2>16887 Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>16887 Tehran</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Navidbakhsh, Mahdi" sort="Navidbakhsh, Mahdi" uniqKey="Navidbakhsh M" first="Mahdi" last="Navidbakhsh">Mahdi Navidbakhsh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology</s1>
<s2>16887 Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>16887 Tehran</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0176869</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0176869 INIST</idno>
<idno type="RBID">Pascal:14-0176869</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000058</idno>
<idno type="wicri:Area/PascalFrancis/Curation">001203</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000076</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions</title>
<author>
<name sortKey="Karimi, Alireza" sort="Karimi, Alireza" uniqKey="Karimi A" first="Alireza" last="Karimi">Alireza Karimi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology</s1>
<s2>16887 Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>16887 Tehran</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Navidbakhsh, Mahdi" sort="Navidbakhsh, Mahdi" uniqKey="Navidbakhsh M" first="Mahdi" last="Navidbakhsh">Mahdi Navidbakhsh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology</s1>
<s2>16887 Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Iran</country>
<wicri:noRegion>16887 Tehran</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of materials science. Materials in medicine</title>
<title level="j" type="abbreviated">J. mater. sci., Mater. med.</title>
<idno type="ISSN">0957-4530</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of materials science. Materials in medicine</title>
<title level="j" type="abbreviated">J. mater. sci., Mater. med.</title>
<idno type="ISSN">0957-4530</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animal</term>
<term>Biomedical engineering</term>
<term>Brain</term>
<term>Definition</term>
<term>Encephalon</term>
<term>Experimental study</term>
<term>Mechanical properties</term>
<term>Rat</term>
<term>Stress strain</term>
<term>Stress strain relation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Propriété mécanique</term>
<term>Encéphale</term>
<term>Animal</term>
<term>Rat</term>
<term>Cerveau</term>
<term>Contrainte déformation</term>
<term>Relation contrainte déformation</term>
<term>Définition</term>
<term>Génie biomédical</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4530</s0>
</fA01>
<fA03 i2="1">
<s0>J. mater. sci., Mater. med.</s0>
</fA03>
<fA05>
<s2>25</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KARIMI (Alireza)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NAVIDBAKHSH (Mahdi)</s1>
</fA11>
<fA14 i1="01">
<s1>Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology</s1>
<s2>16887 Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1623-1630</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22353</s2>
<s5>354000502799010010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0176869</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of materials science. Materials in medicine</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B25M</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>07</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Propriété mécanique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Mechanical properties</s0>
<s5>08</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Propiedad mecánica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Encéphale</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Encephalon</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Encéfalo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Animal</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Animal</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Animal</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Rat</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Rat</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Rata</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cerveau</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Brain</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Cerebro</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Contrainte déformation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Stress strain</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Tensión deformante</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Relation contrainte déformation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Stress strain relation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Relación tensión deformación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Définition</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Definition</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Definición</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Génie biomédical</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Biomedical engineering</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Ingeniería biomédica</s0>
<s5>17</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Système nerveux central</s0>
<s5>37</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Central nervous system</s0>
<s5>37</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Sistema nervioso central</s0>
<s5>37</s5>
</fC07>
<fN21>
<s1>216</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Iran</li>
</country>
</list>
<tree>
<country name="Iran">
<noRegion>
<name sortKey="Karimi, Alireza" sort="Karimi, Alireza" uniqKey="Karimi A" first="Alireza" last="Karimi">Alireza Karimi</name>
</noRegion>
<name sortKey="Navidbakhsh, Mahdi" sort="Navidbakhsh, Mahdi" uniqKey="Navidbakhsh M" first="Mahdi" last="Navidbakhsh">Mahdi Navidbakhsh</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000076 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000076 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:14-0176869
   |texte=   An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024