Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions

Identifieur interne : 001203 ( PascalFrancis/Curation ); précédent : 001202; suivant : 001204

An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions

Auteurs : Alireza Karimi [Iran] ; Mahdi Navidbakhsh [Iran]

Source :

RBID : Pascal:14-0176869

Descripteurs français

English descriptors

Abstract

There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.
pA  
A01 01  1    @0 0957-4530
A03   1    @0 J. mater. sci., Mater. med.
A05       @2 25
A06       @2 7
A08 01  1  ENG  @1 An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions
A11 01  1    @1 KARIMI (Alireza)
A11 02  1    @1 NAVIDBAKHSH (Mahdi)
A14 01      @1 Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology @2 16887 Tehran @3 IRN @Z 1 aut. @Z 2 aut.
A20       @1 1623-1630
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 22353 @5 354000502799010010
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 30 ref.
A47 01  1    @0 14-0176869
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of materials science. Materials in medicine
A66 01      @0 DEU
C01 01    ENG  @0 There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.
C02 01  X    @0 002B25M
C03 01  X  FRE  @0 Etude expérimentale @5 07
C03 01  X  ENG  @0 Experimental study @5 07
C03 01  X  SPA  @0 Estudio experimental @5 07
C03 02  X  FRE  @0 Propriété mécanique @5 08
C03 02  X  ENG  @0 Mechanical properties @5 08
C03 02  X  SPA  @0 Propiedad mecánica @5 08
C03 03  X  FRE  @0 Encéphale @5 09
C03 03  X  ENG  @0 Encephalon @5 09
C03 03  X  SPA  @0 Encéfalo @5 09
C03 04  X  FRE  @0 Animal @5 10
C03 04  X  ENG  @0 Animal @5 10
C03 04  X  SPA  @0 Animal @5 10
C03 05  X  FRE  @0 Rat @5 11
C03 05  X  ENG  @0 Rat @5 11
C03 05  X  SPA  @0 Rata @5 11
C03 06  X  FRE  @0 Cerveau @5 13
C03 06  X  ENG  @0 Brain @5 13
C03 06  X  SPA  @0 Cerebro @5 13
C03 07  X  FRE  @0 Contrainte déformation @5 14
C03 07  X  ENG  @0 Stress strain @5 14
C03 07  X  SPA  @0 Tensión deformante @5 14
C03 08  X  FRE  @0 Relation contrainte déformation @5 15
C03 08  X  ENG  @0 Stress strain relation @5 15
C03 08  X  SPA  @0 Relación tensión deformación @5 15
C03 09  X  FRE  @0 Définition @5 16
C03 09  X  ENG  @0 Definition @5 16
C03 09  X  SPA  @0 Definición @5 16
C03 10  X  FRE  @0 Génie biomédical @5 17
C03 10  X  ENG  @0 Biomedical engineering @5 17
C03 10  X  SPA  @0 Ingeniería biomédica @5 17
C07 01  X  FRE  @0 Rodentia @2 NS
C07 01  X  ENG  @0 Rodentia @2 NS
C07 01  X  SPA  @0 Rodentia @2 NS
C07 02  X  FRE  @0 Mammalia @2 NS
C07 02  X  ENG  @0 Mammalia @2 NS
C07 02  X  SPA  @0 Mammalia @2 NS
C07 03  X  FRE  @0 Vertebrata @2 NS
C07 03  X  ENG  @0 Vertebrata @2 NS
C07 03  X  SPA  @0 Vertebrata @2 NS
C07 04  X  FRE  @0 Système nerveux central @5 37
C07 04  X  ENG  @0 Central nervous system @5 37
C07 04  X  SPA  @0 Sistema nervioso central @5 37
N21       @1 216
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0176869

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions</title>
<author>
<name sortKey="Karimi, Alireza" sort="Karimi, Alireza" uniqKey="Karimi A" first="Alireza" last="Karimi">Alireza Karimi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology</s1>
<s2>16887 Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
<author>
<name sortKey="Navidbakhsh, Mahdi" sort="Navidbakhsh, Mahdi" uniqKey="Navidbakhsh M" first="Mahdi" last="Navidbakhsh">Mahdi Navidbakhsh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology</s1>
<s2>16887 Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0176869</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0176869 INIST</idno>
<idno type="RBID">Pascal:14-0176869</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000058</idno>
<idno type="wicri:Area/PascalFrancis/Curation">001203</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions</title>
<author>
<name sortKey="Karimi, Alireza" sort="Karimi, Alireza" uniqKey="Karimi A" first="Alireza" last="Karimi">Alireza Karimi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology</s1>
<s2>16887 Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
<author>
<name sortKey="Navidbakhsh, Mahdi" sort="Navidbakhsh, Mahdi" uniqKey="Navidbakhsh M" first="Mahdi" last="Navidbakhsh">Mahdi Navidbakhsh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology</s1>
<s2>16887 Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of materials science. Materials in medicine</title>
<title level="j" type="abbreviated">J. mater. sci., Mater. med.</title>
<idno type="ISSN">0957-4530</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of materials science. Materials in medicine</title>
<title level="j" type="abbreviated">J. mater. sci., Mater. med.</title>
<idno type="ISSN">0957-4530</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animal</term>
<term>Biomedical engineering</term>
<term>Brain</term>
<term>Definition</term>
<term>Encephalon</term>
<term>Experimental study</term>
<term>Mechanical properties</term>
<term>Rat</term>
<term>Stress strain</term>
<term>Stress strain relation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Propriété mécanique</term>
<term>Encéphale</term>
<term>Animal</term>
<term>Rat</term>
<term>Cerveau</term>
<term>Contrainte déformation</term>
<term>Relation contrainte déformation</term>
<term>Définition</term>
<term>Génie biomédical</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4530</s0>
</fA01>
<fA03 i2="1">
<s0>J. mater. sci., Mater. med.</s0>
</fA03>
<fA05>
<s2>25</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KARIMI (Alireza)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NAVIDBAKHSH (Mahdi)</s1>
</fA11>
<fA14 i1="01">
<s1>Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology</s1>
<s2>16887 Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1623-1630</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22353</s2>
<s5>354000502799010010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0176869</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of materials science. Materials in medicine</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B25M</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>07</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Propriété mécanique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Mechanical properties</s0>
<s5>08</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Propiedad mecánica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Encéphale</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Encephalon</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Encéfalo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Animal</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Animal</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Animal</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Rat</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Rat</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Rata</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cerveau</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Brain</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Cerebro</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Contrainte déformation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Stress strain</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Tensión deformante</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Relation contrainte déformation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Stress strain relation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Relación tensión deformación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Définition</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Definition</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Definición</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Génie biomédical</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Biomedical engineering</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Ingeniería biomédica</s0>
<s5>17</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Rodentia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Système nerveux central</s0>
<s5>37</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Central nervous system</s0>
<s5>37</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Sistema nervioso central</s0>
<s5>37</s5>
</fC07>
<fN21>
<s1>216</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001203 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 001203 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:14-0176869
   |texte=   An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024