Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The thermoluminescence efficiency of Li2B4O7:Cu and of CaSO4:Tm for photons.

Identifieur interne : 000461 ( PubMed/Curation ); précédent : 000460; suivant : 000462

The thermoluminescence efficiency of Li2B4O7:Cu and of CaSO4:Tm for photons.

Auteurs : Th Otto [Suisse] ; L. Gindraux ; M. Strasser

Source :

RBID : pubmed:21183547

Descripteurs français

English descriptors

Abstract

The intrinsic thermoluminescence (TL) efficiency of a TL detector relates the absorbed dose in the detector material to the light yield observed upon evaluation. Knowledge of the TL efficiency is of interest when performing numerical simulations of detector response, where only absorbed dose can be predicted. Here, the experimental determination of TL efficiency for calcium sulphate (CaSO(4):Tm) and lithium borate (Li(2)B(4)O(7):Cu) is reported. These materials are widely used in Panasonic dosemeter badges. The results of the study are in agreement with predictions from track structure theory and microdosimetry, relating an enhanced light yield at low X-ray energies to supralinear behaviour of the TL phosphor.

DOI: 10.1093/rpd/ncq503
PubMed: 21183547

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21183547

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The thermoluminescence efficiency of Li2B4O7:Cu and of CaSO4:Tm for photons.</title>
<author>
<name sortKey="Otto, Th" sort="Otto, Th" uniqKey="Otto T" first="Th" last="Otto">Th Otto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Radiation Protection Group, CERN, CH-1211 Genève 23, Switzerland. thomas.otto@cern.ch</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Radiation Protection Group, CERN, CH-1211 Genève 23</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gindraux, L" sort="Gindraux, L" uniqKey="Gindraux L" first="L" last="Gindraux">L. Gindraux</name>
</author>
<author>
<name sortKey="Strasser, M" sort="Strasser, M" uniqKey="Strasser M" first="M" last="Strasser">M. Strasser</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1093/rpd/ncq503</idno>
<idno type="RBID">pubmed:21183547</idno>
<idno type="pmid">21183547</idno>
<idno type="wicri:Area/PubMed/Corpus">000461</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000461</idno>
<idno type="wicri:Area/PubMed/Curation">000461</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000461</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The thermoluminescence efficiency of Li2B4O7:Cu and of CaSO4:Tm for photons.</title>
<author>
<name sortKey="Otto, Th" sort="Otto, Th" uniqKey="Otto T" first="Th" last="Otto">Th Otto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Radiation Protection Group, CERN, CH-1211 Genève 23, Switzerland. thomas.otto@cern.ch</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Radiation Protection Group, CERN, CH-1211 Genève 23</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gindraux, L" sort="Gindraux, L" uniqKey="Gindraux L" first="L" last="Gindraux">L. Gindraux</name>
</author>
<author>
<name sortKey="Strasser, M" sort="Strasser, M" uniqKey="Strasser M" first="M" last="Strasser">M. Strasser</name>
</author>
</analytic>
<series>
<title level="j">Radiation protection dosimetry</title>
<idno type="eISSN">1742-3406</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Boron (analysis)</term>
<term>Calcium Sulfate (analysis)</term>
<term>Cesium Radioisotopes (analysis)</term>
<term>Cobalt Radioisotopes (analysis)</term>
<term>Computer Simulation</term>
<term>Copper (analysis)</term>
<term>Equipment Design</term>
<term>Humans</term>
<term>Lithium (analysis)</term>
<term>Materials Testing</term>
<term>Monte Carlo Method</term>
<term>Oxygen (analysis)</term>
<term>Photons</term>
<term>Radiation Monitoring (instrumentation)</term>
<term>Radiation Monitoring (methods)</term>
<term>Radiation Protection (instrumentation)</term>
<term>Radiation Protection (methods)</term>
<term>Thermoluminescent Dosimetry (instrumentation)</term>
<term>Thermoluminescent Dosimetry (methods)</term>
<term>Thulium (analysis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Bore (analyse)</term>
<term>Conception d'appareillage</term>
<term>Contrôle des radiations ()</term>
<term>Contrôle des radiations (instrumentation)</term>
<term>Cuivre (analyse)</term>
<term>Dosimétrie thermoluminescente ()</term>
<term>Dosimétrie thermoluminescente (instrumentation)</term>
<term>Humains</term>
<term>Lithium (analyse)</term>
<term>Méthode de Monte-Carlo</term>
<term>Oxygène (analyse)</term>
<term>Photons</term>
<term>Radio-isotopes du cobalt (analyse)</term>
<term>Radio-isotopes du césium (analyse)</term>
<term>Radioprotection ()</term>
<term>Radioprotection (instrumentation)</term>
<term>Simulation numérique</term>
<term>Sulfate de calcium (analyse)</term>
<term>Test de matériaux</term>
<term>Thulium (analyse)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Boron</term>
<term>Calcium Sulfate</term>
<term>Cesium Radioisotopes</term>
<term>Cobalt Radioisotopes</term>
<term>Copper</term>
<term>Lithium</term>
<term>Oxygen</term>
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Bore</term>
<term>Cuivre</term>
<term>Lithium</term>
<term>Oxygène</term>
<term>Radio-isotopes du cobalt</term>
<term>Radio-isotopes du césium</term>
<term>Sulfate de calcium</term>
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Radiation Monitoring</term>
<term>Radiation Protection</term>
<term>Thermoluminescent Dosimetry</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Radiation Monitoring</term>
<term>Radiation Protection</term>
<term>Thermoluminescent Dosimetry</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Computer Simulation</term>
<term>Equipment Design</term>
<term>Humans</term>
<term>Materials Testing</term>
<term>Monte Carlo Method</term>
<term>Photons</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="fr">
<term>Algorithmes</term>
<term>Conception d'appareillage</term>
<term>Contrôle des radiations</term>
<term>Dosimétrie thermoluminescente</term>
<term>Humains</term>
<term>Méthode de Monte-Carlo</term>
<term>Photons</term>
<term>Radioprotection</term>
<term>Simulation numérique</term>
<term>Test de matériaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The intrinsic thermoluminescence (TL) efficiency of a TL detector relates the absorbed dose in the detector material to the light yield observed upon evaluation. Knowledge of the TL efficiency is of interest when performing numerical simulations of detector response, where only absorbed dose can be predicted. Here, the experimental determination of TL efficiency for calcium sulphate (CaSO(4):Tm) and lithium borate (Li(2)B(4)O(7):Cu) is reported. These materials are widely used in Panasonic dosemeter badges. The results of the study are in agreement with predictions from track structure theory and microdosimetry, relating an enhanced light yield at low X-ray energies to supralinear behaviour of the TL phosphor.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21183547</PMID>
<DateCreated>
<Year>2011</Year>
<Month>03</Month>
<Day>31</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1742-3406</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>144</Volume>
<Issue>1-4</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Radiation protection dosimetry</Title>
<ISOAbbreviation>Radiat Prot Dosimetry</ISOAbbreviation>
</Journal>
<ArticleTitle>The thermoluminescence efficiency of Li2B4O7:Cu and of CaSO4:Tm for photons.</ArticleTitle>
<Pagination>
<MedlinePgn>234-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/rpd/ncq503</ELocationID>
<Abstract>
<AbstractText>The intrinsic thermoluminescence (TL) efficiency of a TL detector relates the absorbed dose in the detector material to the light yield observed upon evaluation. Knowledge of the TL efficiency is of interest when performing numerical simulations of detector response, where only absorbed dose can be predicted. Here, the experimental determination of TL efficiency for calcium sulphate (CaSO(4):Tm) and lithium borate (Li(2)B(4)O(7):Cu) is reported. These materials are widely used in Panasonic dosemeter badges. The results of the study are in agreement with predictions from track structure theory and microdosimetry, relating an enhanced light yield at low X-ray energies to supralinear behaviour of the TL phosphor.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Otto</LastName>
<ForeName>Th</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Radiation Protection Group, CERN, CH-1211 Genève 23, Switzerland. thomas.otto@cern.ch</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gindraux</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strasser</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>12</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Radiat Prot Dosimetry</MedlineTA>
<NlmUniqueID>8109958</NlmUniqueID>
<ISSNLinking>0144-8420</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002588">Cesium Radioisotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003037">Cobalt Radioisotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8RKC5ATI4P</RegistryNumber>
<NameOfSubstance UI="D013932">Thulium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9FN79X2M3F</RegistryNumber>
<NameOfSubstance UI="D008094">Lithium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N9E3X5056Q</RegistryNumber>
<NameOfSubstance UI="D001895">Boron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>WAT0DDB505</RegistryNumber>
<NameOfSubstance UI="D002133">Calcium Sulfate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001895">Boron</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002133">Calcium Sulfate</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002588">Cesium Radioisotopes</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003037">Cobalt Radioisotopes</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003300">Copper</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008094">Lithium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008422">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009010">Monte Carlo Method</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010100">Oxygen</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017785">Photons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011834">Radiation Monitoring</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011835">Radiation Protection</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013819">Thermoluminescent Dosimetry</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013932">Thulium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2010</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">ncq503</ArticleId>
<ArticleId IdType="doi">10.1093/rpd/ncq503</ArticleId>
<ArticleId IdType="pubmed">21183547</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000461 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000461 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:21183547
   |texte=   The thermoluminescence efficiency of Li2B4O7:Cu and of CaSO4:Tm for photons.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:21183547" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024