Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling a hypothetical 170Tm source for brachytherapy applications.

Identifieur interne : 000413 ( PubMed/Curation ); précédent : 000412; suivant : 000414

Modeling a hypothetical 170Tm source for brachytherapy applications.

Auteurs : Shirin A. Enger [Canada] ; Michel D'Amours ; Luc Beaulieu

Source :

RBID : pubmed:21992348

Descripteurs français

English descriptors

Abstract

To perform absorbed dose calculations based on Monte Carlo simulations for a hypothetical (170)Tm source and to investigate the influence of encapsulating material on the energy spectrum of the emitted electrons and photons.

DOI: 10.1118/1.3626482
PubMed: 21992348

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21992348

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling a hypothetical 170Tm source for brachytherapy applications.</title>
<author>
<name sortKey="Enger, Shirin A" sort="Enger, Shirin A" uniqKey="Enger S" first="Shirin A" last="Enger">Shirin A. Enger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="D Amours, Michel" sort="D Amours, Michel" uniqKey="D Amours M" first="Michel" last="D'Amours">Michel D'Amours</name>
</author>
<author>
<name sortKey="Beaulieu, Luc" sort="Beaulieu, Luc" uniqKey="Beaulieu L" first="Luc" last="Beaulieu">Luc Beaulieu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1118/1.3626482</idno>
<idno type="RBID">pubmed:21992348</idno>
<idno type="pmid">21992348</idno>
<idno type="wicri:Area/PubMed/Corpus">000413</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000413</idno>
<idno type="wicri:Area/PubMed/Curation">000413</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000413</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modeling a hypothetical 170Tm source for brachytherapy applications.</title>
<author>
<name sortKey="Enger, Shirin A" sort="Enger, Shirin A" uniqKey="Enger S" first="Shirin A" last="Enger">Shirin A. Enger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="D Amours, Michel" sort="D Amours, Michel" uniqKey="D Amours M" first="Michel" last="D'Amours">Michel D'Amours</name>
</author>
<author>
<name sortKey="Beaulieu, Luc" sort="Beaulieu, Luc" uniqKey="Beaulieu L" first="Luc" last="Beaulieu">Luc Beaulieu</name>
</author>
</analytic>
<series>
<title level="j">Medical physics</title>
<idno type="ISSN">0094-2405</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Brachytherapy (instrumentation)</term>
<term>Brachytherapy (methods)</term>
<term>Computer Simulation</term>
<term>Electrons</term>
<term>Equipment Design</term>
<term>Gold (chemistry)</term>
<term>Humans</term>
<term>Models, Theoretical</term>
<term>Monte Carlo Method</term>
<term>Photons</term>
<term>Platinum (chemistry)</term>
<term>Radioisotopes (analysis)</term>
<term>Radiotherapy Planning, Computer-Assisted (methods)</term>
<term>Stainless Steel (chemistry)</term>
<term>Thulium (analysis)</term>
<term>Titanium (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acier inoxydable ()</term>
<term>Algorithmes</term>
<term>Conception d'appareillage</term>
<term>Curiethérapie ()</term>
<term>Curiethérapie (instrumentation)</term>
<term>Humains</term>
<term>Modèles théoriques</term>
<term>Méthode de Monte-Carlo</term>
<term>Or ()</term>
<term>Photons</term>
<term>Planification de radiothérapie assistée par ordinateur ()</term>
<term>Platine ()</term>
<term>Radio-isotopes (analyse)</term>
<term>Simulation numérique</term>
<term>Thulium (analyse)</term>
<term>Titane ()</term>
<term>Électrons</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Radioisotopes</term>
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Gold</term>
<term>Platinum</term>
<term>Stainless Steel</term>
<term>Titanium</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Radio-isotopes</term>
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Brachytherapy</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Brachytherapy</term>
<term>Radiotherapy Planning, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Computer Simulation</term>
<term>Electrons</term>
<term>Equipment Design</term>
<term>Humans</term>
<term>Models, Theoretical</term>
<term>Monte Carlo Method</term>
<term>Photons</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acier inoxydable</term>
<term>Algorithmes</term>
<term>Conception d'appareillage</term>
<term>Curiethérapie</term>
<term>Humains</term>
<term>Modèles théoriques</term>
<term>Méthode de Monte-Carlo</term>
<term>Or</term>
<term>Photons</term>
<term>Planification de radiothérapie assistée par ordinateur</term>
<term>Platine</term>
<term>Simulation numérique</term>
<term>Titane</term>
<term>Électrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To perform absorbed dose calculations based on Monte Carlo simulations for a hypothetical (170)Tm source and to investigate the influence of encapsulating material on the energy spectrum of the emitted electrons and photons.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21992348</PMID>
<DateCreated>
<Year>2011</Year>
<Month>10</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>12</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0094-2405</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>38</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2011</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Medical physics</Title>
<ISOAbbreviation>Med Phys</ISOAbbreviation>
</Journal>
<ArticleTitle>Modeling a hypothetical 170Tm source for brachytherapy applications.</ArticleTitle>
<Pagination>
<MedlinePgn>5307-10</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1118/1.3626482</ELocationID>
<Abstract>
<AbstractText Label="PURPOSE" NlmCategory="OBJECTIVE">To perform absorbed dose calculations based on Monte Carlo simulations for a hypothetical (170)Tm source and to investigate the influence of encapsulating material on the energy spectrum of the emitted electrons and photons.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">GEANT4 Monte Carlo code version 9.2 patch 2 was used to simulate the decay process of (170)Tm and to calculate the absorbed dose distribution using the GEANT4 Penelope physics models. A hypothetical (170)Tm source based on the Flexisource brachytherapy design with the active core set as a pure thulium cylinder (length 3.5 mm and diameter 0.6 mm) and different cylindrical source encapsulations (length 5 mm and thickness 0.125 mm) constructed of titanium, stainless-steel, gold, or platinum were simulated. The radial dose function for the line source approximation was calculated following the TG-43U1 formalism for the stainless-steel encapsulation.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">For the titanium and stainless-steel encapsulation, 94% of the total bremsstrahlung is produced inside the core, 4.8 and 5.5% in titanium and stainless-steel capsules, respectively, and less than 1% in water. For the gold capsule, 85% is produced inside the core, 14.2% inside the gold capsule, and a negligible amount (<1%) in water. Platinum encapsulation resulted in bremsstrahlung effects similar to those with the gold encapsulation. The range of the beta particles decreases by 1.1 mm with the stainless-steel encapsulation compared to the bare source but the tissue will still receive dose from the beta particles several millimeters from the source capsule. The gold and platinum capsules not only absorb most of the electrons but also attenuate low energy photons. The mean energy of the photons escaping the core and the stainless-steel capsule is 113 keV while for the gold and platinum the mean energy is 160 keV and 165 keV, respectively.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">A (170)Tm source is primarily a bremsstrahlung source, with the majority of bremsstrahlung photons being generated in the source core and experiencing little attenuation in the source encapsulation. Electrons are efficiently absorbed by the gold and platinum encapsulations. However, for the stainless-steel capsule (or other lower Z encapsulations) electrons will escape. The dose from these electrons is dominant over the photon dose in the first few millimeter but is not taken into account by current standard treatment planning systems. The total energy spectrum of photons emerging from the source depends on the encapsulation composition and results in mean photon energies well above 100 keV. This is higher than the main gamma-ray energy peak at 84 keV. Based on our results, the use of (170)Tm as a brachytherapy source presents notable challenges.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Enger</LastName>
<ForeName>Shirin A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>D'Amours</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beaulieu</LastName>
<ForeName>Luc</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Med Phys</MedlineTA>
<NlmUniqueID>0425746</NlmUniqueID>
<ISSNLinking>0094-2405</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011868">Radioisotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>12597-68-1</RegistryNumber>
<NameOfSubstance UI="D013193">Stainless Steel</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>49DFR088MY</RegistryNumber>
<NameOfSubstance UI="D010984">Platinum</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-57-5</RegistryNumber>
<NameOfSubstance UI="D006046">Gold</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8RKC5ATI4P</RegistryNumber>
<NameOfSubstance UI="D013932">Thulium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D1JT611TNE</RegistryNumber>
<NameOfSubstance UI="D014025">Titanium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001918">Brachytherapy</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004583">Electrons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006046">Gold</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008962">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009010">Monte Carlo Method</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017785">Photons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010984">Platinum</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011868">Radioisotopes</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011880">Radiotherapy Planning, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013193">Stainless Steel</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013932">Thulium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014025">Titanium</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1118/1.3626482</ArticleId>
<ArticleId IdType="pubmed">21992348</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000413 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000413 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:21992348
   |texte=   Modeling a hypothetical 170Tm source for brachytherapy applications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:21992348" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024