Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TmDOTA-tetraglycinate encapsulated liposomes as pH-sensitive LipoCEST agents.

Identifieur interne : 000400 ( PubMed/Corpus ); précédent : 000399; suivant : 000401

TmDOTA-tetraglycinate encapsulated liposomes as pH-sensitive LipoCEST agents.

Auteurs : Ana Christina L. Opina ; Ketan B. Ghaghada ; Piyu Zhao ; Garry Kiefer ; Ananth Annapragada ; A Dean Sherry

Source :

RBID : pubmed:22140438

English descriptors

Abstract

Lanthanide DOTA-tetraglycinate (LnDOTA-(gly)₄⁻) complexes contain four magnetically equivalent amide protons that exchange with protons of bulk water. The rate of this base catalyzed exchange process has been measured using chemical exchange saturation transfer (CEST) NMR techniques as a function of solution pH for various paramagnetic LnDOTA-(gly)₄⁻ complexes to evaluate the effects of lanthanide ion size on this process. Complexes with Tb(III), Dy(III), Tm(III) and Yb(III) were chosen because these ions induce large hyperfine shifts in all ligand protons, including the exchanging amide protons. The magnitude of the amide proton CEST exchange signal differed for the four paramagnetic complexes in order, Yb>Tm>Tb>Dy. Although the Dy(III) complex showed the largest hyperfine shift as expected, the combination of favorable chemical shift and amide proton CEST linewidth in the Tm(III) complex was deemed most favorable for future in vivo applications where tissue magnetization effects can interfere. TmDOTA-(gly)₄⁻ at various concentrations was encapsulated in the core interior of liposomes to yield lipoCEST particles for molecular imaging. The resulting nanoparticles showed less than 1% leakage of the agent from the interior over a range of temperatures and pH. The pH versus amide proton CEST curves differed for the free versus encapsulated agents over the acidic pH regions, consistent with a lower proton permeability across the liposomal bilayer for the encapsulated agent. Nevertheless, the resulting lipoCEST nanoparticles amplify the CEST sensitivity by a factor of ∼10⁴ compared to the free, un-encapsulated agent. Such pH sensitive nano-probes could prove useful for pH mapping of liposomes targeted to tumors.

DOI: 10.1371/journal.pone.0027370
PubMed: 22140438

Links to Exploration step

pubmed:22140438

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TmDOTA-tetraglycinate encapsulated liposomes as pH-sensitive LipoCEST agents.</title>
<author>
<name sortKey="Opina, Ana Christina L" sort="Opina, Ana Christina L" uniqKey="Opina A" first="Ana Christina L" last="Opina">Ana Christina L. Opina</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Texas at Dallas, Richardson, Texas, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghaghada, Ketan B" sort="Ghaghada, Ketan B" uniqKey="Ghaghada K" first="Ketan B" last="Ghaghada">Ketan B. Ghaghada</name>
</author>
<author>
<name sortKey="Zhao, Piyu" sort="Zhao, Piyu" uniqKey="Zhao P" first="Piyu" last="Zhao">Piyu Zhao</name>
</author>
<author>
<name sortKey="Kiefer, Garry" sort="Kiefer, Garry" uniqKey="Kiefer G" first="Garry" last="Kiefer">Garry Kiefer</name>
</author>
<author>
<name sortKey="Annapragada, Ananth" sort="Annapragada, Ananth" uniqKey="Annapragada A" first="Ananth" last="Annapragada">Ananth Annapragada</name>
</author>
<author>
<name sortKey="Sherry, A Dean" sort="Sherry, A Dean" uniqKey="Sherry A" first="A Dean" last="Sherry">A Dean Sherry</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1371/journal.pone.0027370</idno>
<idno type="RBID">pubmed:22140438</idno>
<idno type="pmid">22140438</idno>
<idno type="wicri:Area/PubMed/Corpus">000400</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000400</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TmDOTA-tetraglycinate encapsulated liposomes as pH-sensitive LipoCEST agents.</title>
<author>
<name sortKey="Opina, Ana Christina L" sort="Opina, Ana Christina L" uniqKey="Opina A" first="Ana Christina L" last="Opina">Ana Christina L. Opina</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Texas at Dallas, Richardson, Texas, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghaghada, Ketan B" sort="Ghaghada, Ketan B" uniqKey="Ghaghada K" first="Ketan B" last="Ghaghada">Ketan B. Ghaghada</name>
</author>
<author>
<name sortKey="Zhao, Piyu" sort="Zhao, Piyu" uniqKey="Zhao P" first="Piyu" last="Zhao">Piyu Zhao</name>
</author>
<author>
<name sortKey="Kiefer, Garry" sort="Kiefer, Garry" uniqKey="Kiefer G" first="Garry" last="Kiefer">Garry Kiefer</name>
</author>
<author>
<name sortKey="Annapragada, Ananth" sort="Annapragada, Ananth" uniqKey="Annapragada A" first="Ananth" last="Annapragada">Ananth Annapragada</name>
</author>
<author>
<name sortKey="Sherry, A Dean" sort="Sherry, A Dean" uniqKey="Sherry A" first="A Dean" last="Sherry">A Dean Sherry</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amides (chemistry)</term>
<term>Coordination Complexes (chemistry)</term>
<term>Drug Compounding</term>
<term>Hydrodynamics</term>
<term>Hydrogen-Ion Concentration</term>
<term>Liposomes (chemistry)</term>
<term>Magnetic Resonance Spectroscopy (methods)</term>
<term>Magnetics</term>
<term>Organometallic Compounds (chemistry)</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Amides</term>
<term>Coordination Complexes</term>
<term>Liposomes</term>
<term>Organometallic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Magnetic Resonance Spectroscopy</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Compounding</term>
<term>Hydrodynamics</term>
<term>Hydrogen-Ion Concentration</term>
<term>Magnetics</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lanthanide DOTA-tetraglycinate (LnDOTA-(gly)₄⁻) complexes contain four magnetically equivalent amide protons that exchange with protons of bulk water. The rate of this base catalyzed exchange process has been measured using chemical exchange saturation transfer (CEST) NMR techniques as a function of solution pH for various paramagnetic LnDOTA-(gly)₄⁻ complexes to evaluate the effects of lanthanide ion size on this process. Complexes with Tb(III), Dy(III), Tm(III) and Yb(III) were chosen because these ions induce large hyperfine shifts in all ligand protons, including the exchanging amide protons. The magnitude of the amide proton CEST exchange signal differed for the four paramagnetic complexes in order, Yb>Tm>Tb>Dy. Although the Dy(III) complex showed the largest hyperfine shift as expected, the combination of favorable chemical shift and amide proton CEST linewidth in the Tm(III) complex was deemed most favorable for future in vivo applications where tissue magnetization effects can interfere. TmDOTA-(gly)₄⁻ at various concentrations was encapsulated in the core interior of liposomes to yield lipoCEST particles for molecular imaging. The resulting nanoparticles showed less than 1% leakage of the agent from the interior over a range of temperatures and pH. The pH versus amide proton CEST curves differed for the free versus encapsulated agents over the acidic pH regions, consistent with a lower proton permeability across the liposomal bilayer for the encapsulated agent. Nevertheless, the resulting lipoCEST nanoparticles amplify the CEST sensitivity by a factor of ∼10⁴ compared to the free, un-encapsulated agent. Such pH sensitive nano-probes could prove useful for pH mapping of liposomes targeted to tumors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22140438</PMID>
<DateCreated>
<Year>2011</Year>
<Month>12</Month>
<Day>05</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>04</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>01</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>TmDOTA-tetraglycinate encapsulated liposomes as pH-sensitive LipoCEST agents.</ArticleTitle>
<Pagination>
<MedlinePgn>e27370</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0027370</ELocationID>
<Abstract>
<AbstractText>Lanthanide DOTA-tetraglycinate (LnDOTA-(gly)₄⁻) complexes contain four magnetically equivalent amide protons that exchange with protons of bulk water. The rate of this base catalyzed exchange process has been measured using chemical exchange saturation transfer (CEST) NMR techniques as a function of solution pH for various paramagnetic LnDOTA-(gly)₄⁻ complexes to evaluate the effects of lanthanide ion size on this process. Complexes with Tb(III), Dy(III), Tm(III) and Yb(III) were chosen because these ions induce large hyperfine shifts in all ligand protons, including the exchanging amide protons. The magnitude of the amide proton CEST exchange signal differed for the four paramagnetic complexes in order, Yb>Tm>Tb>Dy. Although the Dy(III) complex showed the largest hyperfine shift as expected, the combination of favorable chemical shift and amide proton CEST linewidth in the Tm(III) complex was deemed most favorable for future in vivo applications where tissue magnetization effects can interfere. TmDOTA-(gly)₄⁻ at various concentrations was encapsulated in the core interior of liposomes to yield lipoCEST particles for molecular imaging. The resulting nanoparticles showed less than 1% leakage of the agent from the interior over a range of temperatures and pH. The pH versus amide proton CEST curves differed for the free versus encapsulated agents over the acidic pH regions, consistent with a lower proton permeability across the liposomal bilayer for the encapsulated agent. Nevertheless, the resulting lipoCEST nanoparticles amplify the CEST sensitivity by a factor of ∼10⁴ compared to the free, un-encapsulated agent. Such pH sensitive nano-probes could prove useful for pH mapping of liposomes targeted to tumors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Opina</LastName>
<ForeName>Ana Christina L</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Texas at Dallas, Richardson, Texas, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghaghada</LastName>
<ForeName>Ketan B</ForeName>
<Initials>KB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Piyu</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kiefer</LastName>
<ForeName>Garry</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Annapragada</LastName>
<ForeName>Ananth</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sherry</LastName>
<ForeName>A Dean</ForeName>
<Initials>AD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA-115531</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>EB-004582</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41 RR002584</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>RR-02584</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U24 CA126608</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U24 CA126608-04</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U24 CA126608-05</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>11</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000577">Amides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056831">Coordination Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008081">Liposomes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009942">Organometallic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C571168">TmDOTA-tetraglycinate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C463281">thulium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2001 Feb 21;123(7):1517-8</RefSource>
<PMID Version="1">11456734</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2000 Nov;44(5):799-802</RefSource>
<PMID Version="1">11064415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2002 Nov 15;41(22):4334-6</RefSource>
<PMID Version="1">12434381</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Radiol. 2004 Apr;39(4):235-43</RefSource>
<PMID Version="1">15021328</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1968 Jun 11;150(4):666-75</RefSource>
<PMID Version="1">5690752</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 1979 Aug 28;89(4):1287-93</RefSource>
<PMID Version="1">496958</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 1980 Feb 15;186(2):591-8</RefSource>
<PMID Version="1">7378067</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1989 Apr;10(1):135-44</RefSource>
<PMID Version="1">2547135</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 1990 Jul 30;268(1):235-7</RefSource>
<PMID Version="1">2384160</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Radiology. 1991 Apr;179(1):133-7</RefSource>
<PMID Version="1">2006263</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1991 Feb;17(2):304-14</RefSource>
<PMID Version="1">2062205</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1991 Aug 26;1067(2):131-8</RefSource>
<PMID Version="1">1878366</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Pharmacol Sci. 1994 Jul;15(7):215-20</RefSource>
<PMID Version="1">7940982</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2005 Aug 26;44(34):5513-5</RefSource>
<PMID Version="1">16052647</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2006 May;55(5):1023-9</RefSource>
<PMID Version="1">16586449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>AJNR Am J Neuroradiol. 2007 Jan;28(1):48-53</RefSource>
<PMID Version="1">17213423</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pharm Res. 2007 Jun;24(6):1193-201</RefSource>
<PMID Version="1">17373581</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2008 Apr 16;130(15):5178-84</RefSource>
<PMID Version="1">18361490</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Magn Reson Imaging. 2009 Dec;30(6):1240-8</RefSource>
<PMID Version="1">19938036</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2002 Apr;47(4):639-48</RefSource>
<PMID Version="1">11948724</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000577">Amides</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D056831">Coordination Complexes</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D004339">Drug Compounding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D057446">Hydrodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006863">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008081">Liposomes</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009682">Magnetic Resonance Spectroscopy</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008280">Magnetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009942">Organometallic Compounds</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3225356</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>6</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2011</Year>
<Month>11</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pone.0027370</ArticleId>
<ArticleId IdType="pii">PONE-D-11-11490</ArticleId>
<ArticleId IdType="pubmed">22140438</ArticleId>
<ArticleId IdType="pmc">PMC3225356</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000400 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000400 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22140438
   |texte=   TmDOTA-tetraglycinate encapsulated liposomes as pH-sensitive LipoCEST agents.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22140438" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024