Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The pH sensitivity of -NH exchange in LnDOTA-tetraamide complexes varies with amide substituent.

Identifieur interne : 000399 ( PubMed/Corpus ); précédent : 000398; suivant : 000400

The pH sensitivity of -NH exchange in LnDOTA-tetraamide complexes varies with amide substituent.

Auteurs : Ana Christina L. Opina ; Yunkou Wu ; Piyu Zhao ; Garry Kiefer ; A Dean Sherry

Source :

RBID : pubmed:22144023

English descriptors

Abstract

The amide proton exchange rates in various lanthanide(III) DOTA-tetraamide complexes were investigated by CEST as a function of variable chemical structures and charges on the amide substituents. Comparisons were made between YbDOTA-(gly)(4)(-) (Yb-1), YbDOTA-(NHCH(2)PO(3))(4 (5-) (Yb-2) and YbDOTA-(NHCH(2)PO(3)Et(2))(4)(3+) (Yb-3). The general shapes of the CEST vs pH profiles were similar for the three complexes but they showed maximum CEST intensities at different pH values, pH 8.3, 8.8 and 6.9 for Yb-1, Yb-2 and Yb-3, respectively. This indicates that a more negatively charged substituent on the amide helps stabilize the partial positive charge on the amide nitrogen and consequently more base is required to catalyze proton exchange. The chemical shifts of the -NH protons in Yb-1 and Yb-2 were similar (-17 ppm) while the -NH proton in Yb-3 was at -13 ppm. This shows that the crystal field produced by the amide oxygen donor atoms in Yb-3 is substantially weaker than that in the other two complexes. In an effort to expand the useful range of pH values that might be measured using these complexes as CEST agents, the shapes of the CEST vs pH curves were also determined for two thulium(III) complexes with much larger hyperfine shifted -NH proton resonances. The ratio of CEST from -NH exchange in Tm-1 compared with CEST from -NH exchange in Tm-3 was found to be linear over an extended pH range, from 6.3 to 7.4. This demonstrates a potential advantage of using mixtures of lanthanide(III) DOTA-tetraamides for mapping tissue pH by use of ratiometric CEST imaging.

DOI: 10.1002/cmmi.445
PubMed: 22144023

Links to Exploration step

pubmed:22144023

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The pH sensitivity of -NH exchange in LnDOTA-tetraamide complexes varies with amide substituent.</title>
<author>
<name sortKey="Opina, Ana Christina L" sort="Opina, Ana Christina L" uniqKey="Opina A" first="Ana Christina L" last="Opina">Ana Christina L. Opina</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Texas at Dallas, Richardson, TX 75083-0688, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yunkou" sort="Wu, Yunkou" uniqKey="Wu Y" first="Yunkou" last="Wu">Yunkou Wu</name>
</author>
<author>
<name sortKey="Zhao, Piyu" sort="Zhao, Piyu" uniqKey="Zhao P" first="Piyu" last="Zhao">Piyu Zhao</name>
</author>
<author>
<name sortKey="Kiefer, Garry" sort="Kiefer, Garry" uniqKey="Kiefer G" first="Garry" last="Kiefer">Garry Kiefer</name>
</author>
<author>
<name sortKey="Sherry, A Dean" sort="Sherry, A Dean" uniqKey="Sherry A" first="A Dean" last="Sherry">A Dean Sherry</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="????">
<PubDate>
<MedlineDate>2011 Nov-Dec</MedlineDate>
</PubDate>
</date>
<idno type="doi">10.1002/cmmi.445</idno>
<idno type="RBID">pubmed:22144023</idno>
<idno type="pmid">22144023</idno>
<idno type="wicri:Area/PubMed/Corpus">000399</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000399</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The pH sensitivity of -NH exchange in LnDOTA-tetraamide complexes varies with amide substituent.</title>
<author>
<name sortKey="Opina, Ana Christina L" sort="Opina, Ana Christina L" uniqKey="Opina A" first="Ana Christina L" last="Opina">Ana Christina L. Opina</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Texas at Dallas, Richardson, TX 75083-0688, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yunkou" sort="Wu, Yunkou" uniqKey="Wu Y" first="Yunkou" last="Wu">Yunkou Wu</name>
</author>
<author>
<name sortKey="Zhao, Piyu" sort="Zhao, Piyu" uniqKey="Zhao P" first="Piyu" last="Zhao">Piyu Zhao</name>
</author>
<author>
<name sortKey="Kiefer, Garry" sort="Kiefer, Garry" uniqKey="Kiefer G" first="Garry" last="Kiefer">Garry Kiefer</name>
</author>
<author>
<name sortKey="Sherry, A Dean" sort="Sherry, A Dean" uniqKey="Sherry A" first="A Dean" last="Sherry">A Dean Sherry</name>
</author>
</analytic>
<series>
<title level="j">Contrast media & molecular imaging</title>
<idno type="eISSN">1555-4317</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amides (chemistry)</term>
<term>Bismuth (chemistry)</term>
<term>Contrast Media (chemistry)</term>
<term>Drug Combinations</term>
<term>Glycine (chemistry)</term>
<term>Heterocyclic Compounds, 1-Ring (chemistry)</term>
<term>Hydrogen-Ion Concentration</term>
<term>Indenes (chemistry)</term>
<term>Lanthanoid Series Elements (chemistry)</term>
<term>Magnetic Resonance Imaging</term>
<term>Piperazines (chemistry)</term>
<term>Propanolamines (chemistry)</term>
<term>Protons</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Amides</term>
<term>Bismuth</term>
<term>Contrast Media</term>
<term>Glycine</term>
<term>Heterocyclic Compounds, 1-Ring</term>
<term>Indenes</term>
<term>Lanthanoid Series Elements</term>
<term>Piperazines</term>
<term>Propanolamines</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Drug Combinations</term>
<term>Protons</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Hydrogen-Ion Concentration</term>
<term>Magnetic Resonance Imaging</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The amide proton exchange rates in various lanthanide(III) DOTA-tetraamide complexes were investigated by CEST as a function of variable chemical structures and charges on the amide substituents. Comparisons were made between YbDOTA-(gly)(4)(-) (Yb-1), YbDOTA-(NHCH(2)PO(3))(4 (5-) (Yb-2) and YbDOTA-(NHCH(2)PO(3)Et(2))(4)(3+) (Yb-3). The general shapes of the CEST vs pH profiles were similar for the three complexes but they showed maximum CEST intensities at different pH values, pH 8.3, 8.8 and 6.9 for Yb-1, Yb-2 and Yb-3, respectively. This indicates that a more negatively charged substituent on the amide helps stabilize the partial positive charge on the amide nitrogen and consequently more base is required to catalyze proton exchange. The chemical shifts of the -NH protons in Yb-1 and Yb-2 were similar (-17 ppm) while the -NH proton in Yb-3 was at -13 ppm. This shows that the crystal field produced by the amide oxygen donor atoms in Yb-3 is substantially weaker than that in the other two complexes. In an effort to expand the useful range of pH values that might be measured using these complexes as CEST agents, the shapes of the CEST vs pH curves were also determined for two thulium(III) complexes with much larger hyperfine shifted -NH proton resonances. The ratio of CEST from -NH exchange in Tm-1 compared with CEST from -NH exchange in Tm-3 was found to be linear over an extended pH range, from 6.3 to 7.4. This demonstrates a potential advantage of using mixtures of lanthanide(III) DOTA-tetraamides for mapping tissue pH by use of ratiometric CEST imaging.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22144023</PMID>
<DateCreated>
<Year>2011</Year>
<Month>12</Month>
<Day>06</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>04</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>01</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1555-4317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>6</Issue>
<PubDate>
<MedlineDate>2011 Nov-Dec</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Contrast media & molecular imaging</Title>
<ISOAbbreviation>Contrast Media Mol Imaging</ISOAbbreviation>
</Journal>
<ArticleTitle>The pH sensitivity of -NH exchange in LnDOTA-tetraamide complexes varies with amide substituent.</ArticleTitle>
<Pagination>
<MedlinePgn>459-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/cmmi.445</ELocationID>
<Abstract>
<AbstractText>The amide proton exchange rates in various lanthanide(III) DOTA-tetraamide complexes were investigated by CEST as a function of variable chemical structures and charges on the amide substituents. Comparisons were made between YbDOTA-(gly)(4)(-) (Yb-1), YbDOTA-(NHCH(2)PO(3))(4 (5-) (Yb-2) and YbDOTA-(NHCH(2)PO(3)Et(2))(4)(3+) (Yb-3). The general shapes of the CEST vs pH profiles were similar for the three complexes but they showed maximum CEST intensities at different pH values, pH 8.3, 8.8 and 6.9 for Yb-1, Yb-2 and Yb-3, respectively. This indicates that a more negatively charged substituent on the amide helps stabilize the partial positive charge on the amide nitrogen and consequently more base is required to catalyze proton exchange. The chemical shifts of the -NH protons in Yb-1 and Yb-2 were similar (-17 ppm) while the -NH proton in Yb-3 was at -13 ppm. This shows that the crystal field produced by the amide oxygen donor atoms in Yb-3 is substantially weaker than that in the other two complexes. In an effort to expand the useful range of pH values that might be measured using these complexes as CEST agents, the shapes of the CEST vs pH curves were also determined for two thulium(III) complexes with much larger hyperfine shifted -NH proton resonances. The ratio of CEST from -NH exchange in Tm-1 compared with CEST from -NH exchange in Tm-3 was found to be linear over an extended pH range, from 6.3 to 7.4. This demonstrates a potential advantage of using mixtures of lanthanide(III) DOTA-tetraamides for mapping tissue pH by use of ratiometric CEST imaging.</AbstractText>
<CopyrightInformation>Copyright © 2011 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Opina</LastName>
<ForeName>Ana Christina L</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Texas at Dallas, Richardson, TX 75083-0688, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Yunkou</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Piyu</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kiefer</LastName>
<ForeName>Garry</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sherry</LastName>
<ForeName>A Dean</ForeName>
<Initials>AD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA115531</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>EB004582</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41 RR002584</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41 RR002584-22</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA115531</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA115531-05</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB004582</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB004582-04</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>RR02584</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Contrast Media Mol Imaging</MedlineTA>
<NlmUniqueID>101286760</NlmUniqueID>
<ISSNLinking>1555-4309</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000577">Amides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003287">Contrast Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004338">Drug Combinations</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006573">Heterocyclic Compounds, 1-Ring</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007192">Indenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028581">Lanthanoid Series Elements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010879">Piperazines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011412">Propanolamines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011522">Protons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C098227">TM 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>37341-77-8</RegistryNumber>
<NameOfSubstance UI="C003800">PH.3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>60239-18-1</RegistryNumber>
<NameOfSubstance UI="C071349">1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>60607-68-3</RegistryNumber>
<NameOfSubstance UI="C002989">indenolol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>TE7660XO1C</RegistryNumber>
<NameOfSubstance UI="D005998">Glycine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>U015TT5I8H</RegistryNumber>
<NameOfSubstance UI="D001729">Bismuth</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2000 Nov;44(5):799-802</RefSource>
<PMID Version="1">11064415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2010 Oct 13;132(40):14002-3</RefSource>
<PMID Version="1">20853833</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2001 Feb 21;123(7):1517-8</RefSource>
<PMID Version="1">11456734</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2002 Apr;47(4):639-48</RefSource>
<PMID Version="1">11948724</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2002 Nov 15;41(22):4334-6</RefSource>
<PMID Version="1">12434381</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acc Chem Res. 2003 Oct;36(10):783-90</RefSource>
<PMID Version="1">14567712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Radiol. 2004 Apr;39(4):235-43</RefSource>
<PMID Version="1">15021328</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 1966 May 20;88(10):2123-6</RefSource>
<PMID Version="1">5947663</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biochem. 1972;41:903-24</RefSource>
<PMID Version="1">4563445</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1989 Apr;10(1):135-44</RefSource>
<PMID Version="1">2547135</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1991 Feb;17(2):304-14</RefSource>
<PMID Version="1">2062205</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1996 Jan;35(1):30-42</RefSource>
<PMID Version="1">8771020</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Magn Reson. 1998 Jul;133(1):36-45</RefSource>
<PMID Version="1">9654466</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2005 Apr;53(4):790-9</RefSource>
<PMID Version="1">15799055</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2006 May 15;66(10):5216-23</RefSource>
<PMID Version="1">16707446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Soc Rev. 2006 Jun;35(6):500-11</RefSource>
<PMID Version="1">16729144</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Inorg Chem. 2007 Jun 25;46(13):5260-70</RefSource>
<PMID Version="1">17539632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Contrast Media Mol Imaging. 2007 Sep-Oct;2(5):229-39</RefSource>
<PMID Version="1">17937448</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chemistry. 2008;14(24):7250-8</RefSource>
<PMID Version="1">18601236</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Pharm. 2009 Sep-Oct;6(5):1409-16</RefSource>
<PMID Version="1">19298054</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 2001 Apr;14(2):57-64</RefSource>
<PMID Version="1">11320533</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000577">Amides</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001729">Bismuth</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003287">Contrast Media</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004338">Drug Combinations</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005998">Glycine</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006573">Heterocyclic Compounds, 1-Ring</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006863">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007192">Indenes</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D028581">Lanthanoid Series Elements</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008279">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010879">Piperazines</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011412">Propanolamines</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014867">Water</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS279651</OtherID>
<OtherID Source="NLM">PMC3233223</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/cmmi.445</ArticleId>
<ArticleId IdType="pubmed">22144023</ArticleId>
<ArticleId IdType="pmc">PMC3233223</ArticleId>
<ArticleId IdType="mid">NIHMS279651</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000399 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000399 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22144023
   |texte=   The pH sensitivity of -NH exchange in LnDOTA-tetraamide complexes varies with amide substituent.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22144023" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024