Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of KTP, Thulium, and CO2 laser in stapedotomy using specialized visualization techniques: thermal effects.

Identifieur interne : 000263 ( PubMed/Corpus ); précédent : 000262; suivant : 000264

Comparison of KTP, Thulium, and CO2 laser in stapedotomy using specialized visualization techniques: thermal effects.

Auteurs : Digna M A. Kamalski ; Rudolf M. Verdaasdonk ; Tjeerd De Boorder ; Robert Vincent ; Franco Trabelzini ; Wilko Grolman

Source :

RBID : pubmed:23880918

English descriptors

Abstract

High-speed thermal imaging enables visualization of heating of the vestibule during laser-assisted stapedotomy, comparing KTP, CO2, and Thulium laser light. Perforation of the stapes footplate with laser bears the risk of heating of the inner ear fluids. The amount of heating depends on absorption of the laser light and subsequent tissue ablation. The ablation of the footplate is driven by strong water absorption for the CO2 and Thulium laser. For the KTP laser wavelength, ablation is driven by carbonization of the footplate and it might penetrate deep into the inner ear without absorption in water. The thermal effects were visualized in an inner ear model, using two new techniques: (1) high-speed Schlieren imaging shows relative dynamic changes of temperatures up to 2 ms resolution in the perilymph. (2) Thermo imaging provides absolute temperature measurements around the footplate up to 40 ms resolution. The high-speed Schlieren imaging showed minimal heating using the KTP laser. Both CO2 and Thulium laser showed heating below the footplate. Thulium laser wavelength generated heating up to 0.6 mm depth. This was confirmed with thermal imaging, showing a rise of temperature of 4.7 (±3.5) °C for KTP and 9.4 (±6.9) for Thulium in the area of 2 mm below the footplate. For stapedotomy, the Thulium and CO2 laser show more extended thermal effects compared to KTP. High-speed Schlieren imaging and thermal imaging are complimentary techniques to study lasers thermal effects in tissue.

DOI: 10.1007/s00405-013-2624-8
PubMed: 23880918

Links to Exploration step

pubmed:23880918

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparison of KTP, Thulium, and CO2 laser in stapedotomy using specialized visualization techniques: thermal effects.</title>
<author>
<name sortKey="Kamalski, Digna M A" sort="Kamalski, Digna M A" uniqKey="Kamalski D" first="Digna M A" last="Kamalski">Digna M A. Kamalski</name>
<affiliation>
<nlm:affiliation>Department of Otorhinolaryngology, University Medical Center Utrecht, Heidelberglaan 100, G05. 129, 3584 CX, Utrecht, The Netherlands, d.m.a.kamalski@umcutrecht.nl.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Verdaasdonk, Rudolf M" sort="Verdaasdonk, Rudolf M" uniqKey="Verdaasdonk R" first="Rudolf M" last="Verdaasdonk">Rudolf M. Verdaasdonk</name>
</author>
<author>
<name sortKey="De Boorder, Tjeerd" sort="De Boorder, Tjeerd" uniqKey="De Boorder T" first="Tjeerd" last="De Boorder">Tjeerd De Boorder</name>
</author>
<author>
<name sortKey="Vincent, Robert" sort="Vincent, Robert" uniqKey="Vincent R" first="Robert" last="Vincent">Robert Vincent</name>
</author>
<author>
<name sortKey="Trabelzini, Franco" sort="Trabelzini, Franco" uniqKey="Trabelzini F" first="Franco" last="Trabelzini">Franco Trabelzini</name>
</author>
<author>
<name sortKey="Grolman, Wilko" sort="Grolman, Wilko" uniqKey="Grolman W" first="Wilko" last="Grolman">Wilko Grolman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="doi">10.1007/s00405-013-2624-8</idno>
<idno type="RBID">pubmed:23880918</idno>
<idno type="pmid">23880918</idno>
<idno type="wicri:Area/PubMed/Corpus">000263</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000263</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparison of KTP, Thulium, and CO2 laser in stapedotomy using specialized visualization techniques: thermal effects.</title>
<author>
<name sortKey="Kamalski, Digna M A" sort="Kamalski, Digna M A" uniqKey="Kamalski D" first="Digna M A" last="Kamalski">Digna M A. Kamalski</name>
<affiliation>
<nlm:affiliation>Department of Otorhinolaryngology, University Medical Center Utrecht, Heidelberglaan 100, G05. 129, 3584 CX, Utrecht, The Netherlands, d.m.a.kamalski@umcutrecht.nl.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Verdaasdonk, Rudolf M" sort="Verdaasdonk, Rudolf M" uniqKey="Verdaasdonk R" first="Rudolf M" last="Verdaasdonk">Rudolf M. Verdaasdonk</name>
</author>
<author>
<name sortKey="De Boorder, Tjeerd" sort="De Boorder, Tjeerd" uniqKey="De Boorder T" first="Tjeerd" last="De Boorder">Tjeerd De Boorder</name>
</author>
<author>
<name sortKey="Vincent, Robert" sort="Vincent, Robert" uniqKey="Vincent R" first="Robert" last="Vincent">Robert Vincent</name>
</author>
<author>
<name sortKey="Trabelzini, Franco" sort="Trabelzini, Franco" uniqKey="Trabelzini F" first="Franco" last="Trabelzini">Franco Trabelzini</name>
</author>
<author>
<name sortKey="Grolman, Wilko" sort="Grolman, Wilko" uniqKey="Grolman W" first="Wilko" last="Grolman">Wilko Grolman</name>
</author>
</analytic>
<series>
<title level="j">European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery</title>
<idno type="eISSN">1434-4726</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Hot Temperature</term>
<term>Humans</term>
<term>Lasers, Gas (therapeutic use)</term>
<term>Lasers, Solid-State (therapeutic use)</term>
<term>Models, Anatomic</term>
<term>Otosclerosis (surgery)</term>
<term>Perilymph</term>
<term>Stapes Mobilization (instrumentation)</term>
<term>Stapes Mobilization (methods)</term>
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Stapes Mobilization</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Stapes Mobilization</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Otosclerosis</term>
</keywords>
<keywords scheme="MESH" qualifier="therapeutic use" xml:lang="en">
<term>Lasers, Gas</term>
<term>Lasers, Solid-State</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Hot Temperature</term>
<term>Humans</term>
<term>Models, Anatomic</term>
<term>Perilymph</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High-speed thermal imaging enables visualization of heating of the vestibule during laser-assisted stapedotomy, comparing KTP, CO2, and Thulium laser light. Perforation of the stapes footplate with laser bears the risk of heating of the inner ear fluids. The amount of heating depends on absorption of the laser light and subsequent tissue ablation. The ablation of the footplate is driven by strong water absorption for the CO2 and Thulium laser. For the KTP laser wavelength, ablation is driven by carbonization of the footplate and it might penetrate deep into the inner ear without absorption in water. The thermal effects were visualized in an inner ear model, using two new techniques: (1) high-speed Schlieren imaging shows relative dynamic changes of temperatures up to 2 ms resolution in the perilymph. (2) Thermo imaging provides absolute temperature measurements around the footplate up to 40 ms resolution. The high-speed Schlieren imaging showed minimal heating using the KTP laser. Both CO2 and Thulium laser showed heating below the footplate. Thulium laser wavelength generated heating up to 0.6 mm depth. This was confirmed with thermal imaging, showing a rise of temperature of 4.7 (±3.5) °C for KTP and 9.4 (±6.9) for Thulium in the area of 2 mm below the footplate. For stapedotomy, the Thulium and CO2 laser show more extended thermal effects compared to KTP. High-speed Schlieren imaging and thermal imaging are complimentary techniques to study lasers thermal effects in tissue.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23880918</PMID>
<DateCreated>
<Year>2014</Year>
<Month>05</Month>
<Day>06</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>02</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1434-4726</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>271</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery</Title>
<ISOAbbreviation>Eur Arch Otorhinolaryngol</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparison of KTP, Thulium, and CO2 laser in stapedotomy using specialized visualization techniques: thermal effects.</ArticleTitle>
<Pagination>
<MedlinePgn>1477-83</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00405-013-2624-8</ELocationID>
<Abstract>
<AbstractText>High-speed thermal imaging enables visualization of heating of the vestibule during laser-assisted stapedotomy, comparing KTP, CO2, and Thulium laser light. Perforation of the stapes footplate with laser bears the risk of heating of the inner ear fluids. The amount of heating depends on absorption of the laser light and subsequent tissue ablation. The ablation of the footplate is driven by strong water absorption for the CO2 and Thulium laser. For the KTP laser wavelength, ablation is driven by carbonization of the footplate and it might penetrate deep into the inner ear without absorption in water. The thermal effects were visualized in an inner ear model, using two new techniques: (1) high-speed Schlieren imaging shows relative dynamic changes of temperatures up to 2 ms resolution in the perilymph. (2) Thermo imaging provides absolute temperature measurements around the footplate up to 40 ms resolution. The high-speed Schlieren imaging showed minimal heating using the KTP laser. Both CO2 and Thulium laser showed heating below the footplate. Thulium laser wavelength generated heating up to 0.6 mm depth. This was confirmed with thermal imaging, showing a rise of temperature of 4.7 (±3.5) °C for KTP and 9.4 (±6.9) for Thulium in the area of 2 mm below the footplate. For stapedotomy, the Thulium and CO2 laser show more extended thermal effects compared to KTP. High-speed Schlieren imaging and thermal imaging are complimentary techniques to study lasers thermal effects in tissue.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kamalski</LastName>
<ForeName>Digna M A</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>Department of Otorhinolaryngology, University Medical Center Utrecht, Heidelberglaan 100, G05. 129, 3584 CX, Utrecht, The Netherlands, d.m.a.kamalski@umcutrecht.nl.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Verdaasdonk</LastName>
<ForeName>Rudolf M</ForeName>
<Initials>RM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>de Boorder</LastName>
<ForeName>Tjeerd</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vincent</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Trabelzini</LastName>
<ForeName>Franco</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grolman</LastName>
<ForeName>Wilko</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Eur Arch Otorhinolaryngol</MedlineTA>
<NlmUniqueID>9002937</NlmUniqueID>
<ISSNLinking>0937-4477</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>8RKC5ATI4P</RegistryNumber>
<NameOfSubstance UI="D013932">Thulium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D006358">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D054020">Lasers, Gas</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000627">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D053844">Lasers, Solid-State</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000627">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008953">Models, Anatomic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010040">Otosclerosis</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D010498">Perilymph</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013200">Stapes Mobilization</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D013932">Thulium</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>4</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>6</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>7</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00405-013-2624-8</ArticleId>
<ArticleId IdType="pubmed">23880918</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000263 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000263 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23880918
   |texte=   Comparison of KTP, Thulium, and CO2 laser in stapedotomy using specialized visualization techniques: thermal effects.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23880918" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024