Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Continuous Molecular Roadmap to iPSC Reprogramming through Progression Analysis of Single-Cell Mass Cytometry

Identifieur interne : 000312 ( Pmc/Corpus ); précédent : 000311; suivant : 000313

A Continuous Molecular Roadmap to iPSC Reprogramming through Progression Analysis of Single-Cell Mass Cytometry

Auteurs : Eli R. Zunder ; Ernesto Lujan ; Yury Goltsev ; Marius Wernig ; Garry P. Nolan

Source :

RBID : PMC:4401090

Abstract

SUMMARY

To analyze cellular reprogramming at the single-cell level, mass cytometry was used to simultaneously measure markers of pluripotency, differentiation, cell-cycle status, and cellular signaling throughout the reprogramming process. Time-resolved progression analysis of the resulting data sets was used to construct a continuous molecular roadmap for three independent reprogramming systems. Although these systems varied substantially in Oct4, Sox2, Klf4, and c-Myc stoichiometry, they presented a common set of reprogramming landmarks. Early in the reprogramming process, Oct4highKlf4high cells transitioned to a CD73highCD104highCD54low partially reprogrammed state. Ki67low cells from this intermediate population reverted to a MEF-like phenotype, but Ki67high cells advanced through the M-E-T and then bifurcated into two distinct populations: an ESC-like NanoghighSox2highCD54high population and a mesendoderm-like NanoglowSox2lowLin28high CD24highPDGFR-αhigh population. The methods developed here for time-resolved, single-cell progression analysis may be used for the study of additional complex and dynamic systems, such as cancer progression and embryonic development.


Url:
DOI: 10.1016/j.stem.2015.01.015
PubMed: 25748935
PubMed Central: 4401090

Links to Exploration step

PMC:4401090

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Continuous Molecular Roadmap to iPSC Reprogramming through Progression Analysis of Single-Cell Mass Cytometry</title>
<author>
<name sortKey="Zunder, Eli R" sort="Zunder, Eli R" uniqKey="Zunder E" first="Eli R." last="Zunder">Eli R. Zunder</name>
<affiliation>
<nlm:aff id="A1">Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lujan, Ernesto" sort="Lujan, Ernesto" uniqKey="Lujan E" first="Ernesto" last="Lujan">Ernesto Lujan</name>
<affiliation>
<nlm:aff id="A2">Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3">Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goltsev, Yury" sort="Goltsev, Yury" uniqKey="Goltsev Y" first="Yury" last="Goltsev">Yury Goltsev</name>
<affiliation>
<nlm:aff id="A1">Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wernig, Marius" sort="Wernig, Marius" uniqKey="Wernig M" first="Marius" last="Wernig">Marius Wernig</name>
<affiliation>
<nlm:aff id="A2">Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nolan, Garry P" sort="Nolan, Garry P" uniqKey="Nolan G" first="Garry P." last="Nolan">Garry P. Nolan</name>
<affiliation>
<nlm:aff id="A1">Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25748935</idno>
<idno type="pmc">4401090</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401090</idno>
<idno type="RBID">PMC:4401090</idno>
<idno type="doi">10.1016/j.stem.2015.01.015</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000312</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000312</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A Continuous Molecular Roadmap to iPSC Reprogramming through Progression Analysis of Single-Cell Mass Cytometry</title>
<author>
<name sortKey="Zunder, Eli R" sort="Zunder, Eli R" uniqKey="Zunder E" first="Eli R." last="Zunder">Eli R. Zunder</name>
<affiliation>
<nlm:aff id="A1">Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lujan, Ernesto" sort="Lujan, Ernesto" uniqKey="Lujan E" first="Ernesto" last="Lujan">Ernesto Lujan</name>
<affiliation>
<nlm:aff id="A2">Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3">Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goltsev, Yury" sort="Goltsev, Yury" uniqKey="Goltsev Y" first="Yury" last="Goltsev">Yury Goltsev</name>
<affiliation>
<nlm:aff id="A1">Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wernig, Marius" sort="Wernig, Marius" uniqKey="Wernig M" first="Marius" last="Wernig">Marius Wernig</name>
<affiliation>
<nlm:aff id="A2">Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nolan, Garry P" sort="Nolan, Garry P" uniqKey="Nolan G" first="Garry P." last="Nolan">Garry P. Nolan</name>
<affiliation>
<nlm:aff id="A1">Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell stem cell</title>
<idno type="ISSN">1934-5909</idno>
<idno type="eISSN">1875-9777</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>SUMMARY</title>
<p id="P2">To analyze cellular reprogramming at the single-cell level, mass cytometry was used to simultaneously measure markers of pluripotency, differentiation, cell-cycle status, and cellular signaling throughout the reprogramming process. Time-resolved progression analysis of the resulting data sets was used to construct a continuous molecular roadmap for three independent reprogramming systems. Although these systems varied substantially in Oct4, Sox2, Klf4, and c-Myc stoichiometry, they presented a common set of reprogramming landmarks. Early in the reprogramming process, Oct4
<sup>high</sup>
Klf4
<sup>high</sup>
cells transitioned to a CD73
<sup>high</sup>
CD104
<sup>high</sup>
CD54
<sup>low</sup>
partially reprogrammed state. Ki67
<sup>low</sup>
cells from this intermediate population reverted to a MEF-like phenotype, but Ki67
<sup>high</sup>
cells advanced through the M-E-T and then bifurcated into two distinct populations: an ESC-like Nanog
<sup>high</sup>
Sox2
<sup>high</sup>
CD54
<sup>high</sup>
population and a mesendoderm-like Nanog
<sup>low</sup>
Sox2
<sup>low</sup>
Lin28
<sup>high</sup>
CD24
<sup>high</sup>
PDGFR-α
<sup>high</sup>
population. The methods developed here for time-resolved, single-cell progression analysis may be used for the study of additional complex and dynamic systems, such as cancer progression and embryonic development.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">101311472</journal-id>
<journal-id journal-id-type="pubmed-jr-id">34100</journal-id>
<journal-id journal-id-type="nlm-ta">Cell Stem Cell</journal-id>
<journal-id journal-id-type="iso-abbrev">Cell Stem Cell</journal-id>
<journal-title-group>
<journal-title>Cell stem cell</journal-title>
</journal-title-group>
<issn pub-type="ppub">1934-5909</issn>
<issn pub-type="epub">1875-9777</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25748935</article-id>
<article-id pub-id-type="pmc">4401090</article-id>
<article-id pub-id-type="doi">10.1016/j.stem.2015.01.015</article-id>
<article-id pub-id-type="manuscript">NIHMS664657</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A Continuous Molecular Roadmap to iPSC Reprogramming through Progression Analysis of Single-Cell Mass Cytometry</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Zunder</surname>
<given-names>Eli R.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="author-notes" rid="FN1">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lujan</surname>
<given-names>Ernesto</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Goltsev</surname>
<given-names>Yury</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wernig</surname>
<given-names>Marius</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nolan</surname>
<given-names>Garry P.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Department of Microbiology and Immunology, Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA</aff>
<aff id="A2">
<label>2</label>
Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA</aff>
<aff id="A3">
<label>3</label>
Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA</aff>
<author-notes>
<corresp id="cor1">
<label>*</label>
Correspondence:
<email>gnolan@stanford.edu</email>
</corresp>
<fn id="FN1">
<label>4</label>
<p id="P1">Co-first author</p>
</fn>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>26</day>
<month>2</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="ppub">
<day>5</day>
<month>3</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>05</day>
<month>3</month>
<year>2016</year>
</pub-date>
<volume>16</volume>
<issue>3</issue>
<fpage>323</fpage>
<lpage>337</lpage>
<pmc-comment>elocation-id from pubmed: 10.1016/j.stem.2015.01.015</pmc-comment>
<permissions>
<copyright-statement>© 2015 Elsevier Inc.</copyright-statement>
<copyright-year>2015</copyright-year>
</permissions>
<abstract>
<title>SUMMARY</title>
<p id="P2">To analyze cellular reprogramming at the single-cell level, mass cytometry was used to simultaneously measure markers of pluripotency, differentiation, cell-cycle status, and cellular signaling throughout the reprogramming process. Time-resolved progression analysis of the resulting data sets was used to construct a continuous molecular roadmap for three independent reprogramming systems. Although these systems varied substantially in Oct4, Sox2, Klf4, and c-Myc stoichiometry, they presented a common set of reprogramming landmarks. Early in the reprogramming process, Oct4
<sup>high</sup>
Klf4
<sup>high</sup>
cells transitioned to a CD73
<sup>high</sup>
CD104
<sup>high</sup>
CD54
<sup>low</sup>
partially reprogrammed state. Ki67
<sup>low</sup>
cells from this intermediate population reverted to a MEF-like phenotype, but Ki67
<sup>high</sup>
cells advanced through the M-E-T and then bifurcated into two distinct populations: an ESC-like Nanog
<sup>high</sup>
Sox2
<sup>high</sup>
CD54
<sup>high</sup>
population and a mesendoderm-like Nanog
<sup>low</sup>
Sox2
<sup>low</sup>
Lin28
<sup>high</sup>
CD24
<sup>high</sup>
PDGFR-α
<sup>high</sup>
population. The methods developed here for time-resolved, single-cell progression analysis may be used for the study of additional complex and dynamic systems, such as cancer progression and embryonic development.</p>
</abstract>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000312 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000312 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4401090
   |texte=   A Continuous Molecular Roadmap to iPSC Reprogramming through Progression Analysis of Single-Cell Mass Cytometry
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25748935" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024