Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) for dual biosensing of pH with CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts)

Identifieur interne : 000311 ( Pmc/Corpus ); précédent : 000310; suivant : 000312

Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) for dual biosensing of pH with CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts)

Auteurs : Yuegao Huang ; Daniel Coman ; Meser M. Ali ; Fahmeed Hyder

Source :

RBID : PMC:4222994

Abstract

Relaxivity based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd3+) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the non-exchangeable or the exchangeable protons on the lanthanide complexes themselves. The non-exchangeable protons (e.g., –CHx, where 3≥x≥1) are detected using a three-dimensional chemical shift imaging method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), whereas the exchangeable protons (e.g., –OH or –NHy, where 2≥y≥1) are measured with Chemical Exchange Saturation Transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) chelated with thulium (Tm3+) and ytterbium (Yb3+). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs. using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e., 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP5− than with TmDOTA-4AmP5−. In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging.


Url:
DOI: 10.1002/cmmi.1604
PubMed: 24801742
PubMed Central: 4222994

Links to Exploration step

PMC:4222994

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP
<sup>8−</sup>
) for dual biosensing of pH with CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts)</title>
<author>
<name sortKey="Huang, Yuegao" sort="Huang, Yuegao" uniqKey="Huang Y" first="Yuegao" last="Huang">Yuegao Huang</name>
<affiliation>
<nlm:aff id="A1"> Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2"> Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation>
<nlm:aff id="A1"> Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2"> Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3"> Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ali, Meser M" sort="Ali, Meser M" uniqKey="Ali M" first="Meser M." last="Ali">Meser M. Ali</name>
<affiliation>
<nlm:aff id="A4"> Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation>
<nlm:aff id="A1"> Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2"> Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3"> Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A5"> Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24801742</idno>
<idno type="pmc">4222994</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4222994</idno>
<idno type="RBID">PMC:4222994</idno>
<idno type="doi">10.1002/cmmi.1604</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000311</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000311</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP
<sup>8−</sup>
) for dual biosensing of pH with CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts)</title>
<author>
<name sortKey="Huang, Yuegao" sort="Huang, Yuegao" uniqKey="Huang Y" first="Yuegao" last="Huang">Yuegao Huang</name>
<affiliation>
<nlm:aff id="A1"> Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2"> Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation>
<nlm:aff id="A1"> Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2"> Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3"> Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ali, Meser M" sort="Ali, Meser M" uniqKey="Ali M" first="Meser M." last="Ali">Meser M. Ali</name>
<affiliation>
<nlm:aff id="A4"> Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation>
<nlm:aff id="A1"> Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2"> Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3"> Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A5"> Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Contrast media & molecular imaging</title>
<idno type="ISSN">1555-4309</idno>
<idno type="eISSN">1555-4317</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Relaxivity based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd
<sup>3+</sup>
) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the non-exchangeable or the exchangeable protons on the lanthanide complexes themselves. The non-exchangeable protons (e.g., –CH
<sub>x</sub>
, where 3≥x≥1) are detected using a three-dimensional chemical shift imaging method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), whereas the exchangeable protons (e.g., –OH or –NH
<sub>y</sub>
, where 2≥y≥1) are measured with Chemical Exchange Saturation Transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP
<sup>8−</sup>
) chelated with thulium (Tm
<sup>3+</sup>
) and ytterbium (Yb
<sup>3+</sup>
). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs. using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e., 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP
<sup>5−</sup>
than with TmDOTA-4AmP
<sup>5−</sup>
. In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">101286760</journal-id>
<journal-id journal-id-type="pubmed-jr-id">33141</journal-id>
<journal-id journal-id-type="nlm-ta">Contrast Media Mol Imaging</journal-id>
<journal-id journal-id-type="iso-abbrev">Contrast Media Mol Imaging</journal-id>
<journal-title-group>
<journal-title>Contrast media & molecular imaging</journal-title>
</journal-title-group>
<issn pub-type="ppub">1555-4309</issn>
<issn pub-type="epub">1555-4317</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24801742</article-id>
<article-id pub-id-type="pmc">4222994</article-id>
<article-id pub-id-type="doi">10.1002/cmmi.1604</article-id>
<article-id pub-id-type="manuscript">NIHMS611388</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP
<sup>8−</sup>
) for dual biosensing of pH with CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts)</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Huang</surname>
<given-names>Yuegao</given-names>
</name>
<xref ref-type="aff" rid="A1">a</xref>
<xref ref-type="aff" rid="A2">b</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Coman</surname>
<given-names>Daniel</given-names>
</name>
<xref ref-type="aff" rid="A1">a</xref>
<xref ref-type="aff" rid="A2">b</xref>
<xref ref-type="aff" rid="A3">c</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ali</surname>
<given-names>Meser M.</given-names>
</name>
<xref ref-type="aff" rid="A4">d</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hyder</surname>
<given-names>Fahmeed</given-names>
</name>
<xref ref-type="aff" rid="A1">a</xref>
<xref ref-type="aff" rid="A2">b</xref>
<xref ref-type="aff" rid="A3">c</xref>
<xref ref-type="aff" rid="A5">e</xref>
<xref ref-type="corresp" rid="CR1">*</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>a</label>
Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA</aff>
<aff id="A2">
<label>b</label>
Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA</aff>
<aff id="A3">
<label>c</label>
Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA</aff>
<aff id="A4">
<label>d</label>
Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA</aff>
<aff id="A5">
<label>e</label>
Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA</aff>
<author-notes>
<corresp id="CR1">
<label>*</label>
Correspondence to: F. Hyder, N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06520, USA.
<email>fahmeed.hyder@yale.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>15</day>
<month>7</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>06</day>
<month>5</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="ppub">
<month>1</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>01</day>
<month>1</month>
<year>2016</year>
</pub-date>
<volume>10</volume>
<issue>1</issue>
<fpage>51</fpage>
<lpage>58</lpage>
<pmc-comment>elocation-id from pubmed: 10.1002/cmmi.1604</pmc-comment>
<abstract>
<p id="P1">Relaxivity based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd
<sup>3+</sup>
) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the non-exchangeable or the exchangeable protons on the lanthanide complexes themselves. The non-exchangeable protons (e.g., –CH
<sub>x</sub>
, where 3≥x≥1) are detected using a three-dimensional chemical shift imaging method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), whereas the exchangeable protons (e.g., –OH or –NH
<sub>y</sub>
, where 2≥y≥1) are measured with Chemical Exchange Saturation Transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP
<sup>8−</sup>
) chelated with thulium (Tm
<sup>3+</sup>
) and ytterbium (Yb
<sup>3+</sup>
). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs. using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e., 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP
<sup>5−</sup>
than with TmDOTA-4AmP
<sup>5−</sup>
. In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging.</p>
</abstract>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000311 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000311 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4222994
   |texte=   Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) for dual biosensing of pH with CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts)
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24801742" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024