Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fear conditioning is associated with dynamic directed functional interactions between and within the human amygdala, hippocampus and frontal lobe

Identifieur interne : 000247 ( Pmc/Corpus ); précédent : 000246; suivant : 000248

Fear conditioning is associated with dynamic directed functional interactions between and within the human amygdala, hippocampus and frontal lobe

Auteurs : C. C. Liu ; N. E. Crone ; P. J. Franaszczuk ; D. Cheng ; D. S. Schretlen ; F. A. Lenz

Source :

RBID : PMC:3150454

Abstract

The current model of fear conditioning suggests that it is mediated through modules involving the amygdala (AMY), hippocampus (HIP), and frontal lobe (FL). We now test the hypothesis that habituation and acquisition stages of a fear conditioning protocol are characterized by different event-related causal interactions (ERC) within and between these modules. The protocol employed the painful cutaneous laser as the unconditioned stimulus and ERC was estimated by analysis of local field potentials recorded through electrodes implanted for investigation of epilepsy.

During the pre-stimulus interval of the habituation stage FL>AMY ERC interactions were common. For comparison, in the post-stimulus interval of the habituation stage only a subdivision of the FL (dorsal lateral prefrontal cortex, dlPFC) still exerted the FL>AMY ERC interaction (dlFC>AMY). For a further comparison, during the poststimulus interval of the acquisition stage the dlPFC>AMY interaction persisted and an AMY>FL interaction appeared.

In addition to these ERC interactions between modules, the results also show ERC interactions within modules. During the post-stimulus interval HIP>HIP ERC interactions were more common during acquisition, and deep hippocampal contacts exerted causal interactions upon superficial contacts, possibly explained by connectivity between the perihippocampal gyrus and the hippocampus. During the prestimulus interval of the habituation stage AMY>AMY ERC interactions were commonly found, while interactions between the deep and superficial amygdala (indirect pathway) were independent of intervals and stages. These results suggest that the network subserving fear includes distributed or widespread modules, some of which are themselves `local networks'. ERC interactions between and within modules can be either static or change dynamically across intervals or stages of fear conditioning.


Url:
DOI: 10.1016/j.neuroscience.2011.05.067
PubMed: 21664438
PubMed Central: 3150454

Links to Exploration step

PMC:3150454

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fear conditioning is associated with dynamic directed functional interactions between and within the human amygdala, hippocampus and frontal lobe</title>
<author>
<name sortKey="Liu, C C" sort="Liu, C C" uniqKey="Liu C" first="C. C." last="Liu">C. C. Liu</name>
<affiliation>
<nlm:aff id="A1">Department of Neurosurgery, Johns Hopkins University, Baltimore, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Crone, N E" sort="Crone, N E" uniqKey="Crone N" first="N. E." last="Crone">N. E. Crone</name>
<affiliation>
<nlm:aff id="A2">Department of Neurology, Johns Hopkins University, Baltimore, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Franaszczuk, P J" sort="Franaszczuk, P J" uniqKey="Franaszczuk P" first="P. J." last="Franaszczuk">P. J. Franaszczuk</name>
<affiliation>
<nlm:aff id="A2">Department of Neurology, Johns Hopkins University, Baltimore, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cheng, D" sort="Cheng, D" uniqKey="Cheng D" first="D." last="Cheng">D. Cheng</name>
<affiliation>
<nlm:aff id="A2">Department of Neurology, Johns Hopkins University, Baltimore, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schretlen, D S" sort="Schretlen, D S" uniqKey="Schretlen D" first="D. S." last="Schretlen">D. S. Schretlen</name>
</author>
<author>
<name sortKey="Lenz, F A" sort="Lenz, F A" uniqKey="Lenz F" first="F. A." last="Lenz">F. A. Lenz</name>
<affiliation>
<nlm:aff id="A1">Department of Neurosurgery, Johns Hopkins University, Baltimore, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21664438</idno>
<idno type="pmc">3150454</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150454</idno>
<idno type="RBID">PMC:3150454</idno>
<idno type="doi">10.1016/j.neuroscience.2011.05.067</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">000247</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000247</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Fear conditioning is associated with dynamic directed functional interactions between and within the human amygdala, hippocampus and frontal lobe</title>
<author>
<name sortKey="Liu, C C" sort="Liu, C C" uniqKey="Liu C" first="C. C." last="Liu">C. C. Liu</name>
<affiliation>
<nlm:aff id="A1">Department of Neurosurgery, Johns Hopkins University, Baltimore, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Crone, N E" sort="Crone, N E" uniqKey="Crone N" first="N. E." last="Crone">N. E. Crone</name>
<affiliation>
<nlm:aff id="A2">Department of Neurology, Johns Hopkins University, Baltimore, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Franaszczuk, P J" sort="Franaszczuk, P J" uniqKey="Franaszczuk P" first="P. J." last="Franaszczuk">P. J. Franaszczuk</name>
<affiliation>
<nlm:aff id="A2">Department of Neurology, Johns Hopkins University, Baltimore, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cheng, D" sort="Cheng, D" uniqKey="Cheng D" first="D." last="Cheng">D. Cheng</name>
<affiliation>
<nlm:aff id="A2">Department of Neurology, Johns Hopkins University, Baltimore, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schretlen, D S" sort="Schretlen, D S" uniqKey="Schretlen D" first="D. S." last="Schretlen">D. S. Schretlen</name>
</author>
<author>
<name sortKey="Lenz, F A" sort="Lenz, F A" uniqKey="Lenz F" first="F. A." last="Lenz">F. A. Lenz</name>
<affiliation>
<nlm:aff id="A1">Department of Neurosurgery, Johns Hopkins University, Baltimore, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Neuroscience</title>
<idno type="ISSN">0306-4522</idno>
<idno type="eISSN">1873-7544</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">The current model of fear conditioning suggests that it is mediated through modules involving the amygdala (AMY), hippocampus (HIP), and frontal lobe (FL). We now test the hypothesis that habituation and acquisition stages of a fear conditioning protocol are characterized by different event-related causal interactions (ERC) within and between these modules. The protocol employed the painful cutaneous laser as the unconditioned stimulus and ERC was estimated by analysis of local field potentials recorded through electrodes implanted for investigation of epilepsy.</p>
<p id="P2">During the pre-stimulus interval of the habituation stage FL>AMY ERC interactions were common. For comparison, in the post-stimulus interval of the habituation stage only a subdivision of the FL (dorsal lateral prefrontal cortex, dlPFC) still exerted the FL>AMY ERC interaction (dlFC>AMY). For a further comparison, during the poststimulus interval of the acquisition stage the dlPFC>AMY interaction persisted and an AMY>FL interaction appeared.</p>
<p id="P3">In addition to these ERC interactions between modules, the results also show ERC interactions within modules. During the post-stimulus interval HIP>HIP ERC interactions were more common during acquisition, and deep hippocampal contacts exerted causal interactions upon superficial contacts, possibly explained by connectivity between the perihippocampal gyrus and the hippocampus. During the prestimulus interval of the habituation stage AMY>AMY ERC interactions were commonly found, while interactions between the deep and superficial amygdala (indirect pathway) were independent of intervals and stages. These results suggest that the network subserving fear includes distributed or widespread modules, some of which are themselves `local networks'. ERC interactions between and within modules can be either static or change dynamically across intervals or stages of fear conditioning.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article" xml:lang="en">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">7605074</journal-id>
<journal-id journal-id-type="pubmed-jr-id">6087</journal-id>
<journal-id journal-id-type="nlm-ta">Neuroscience</journal-id>
<journal-title-group>
<journal-title>Neuroscience</journal-title>
</journal-title-group>
<issn pub-type="ppub">0306-4522</issn>
<issn pub-type="epub">1873-7544</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21664438</article-id>
<article-id pub-id-type="pmc">3150454</article-id>
<article-id pub-id-type="doi">10.1016/j.neuroscience.2011.05.067</article-id>
<article-id pub-id-type="manuscript">NIHMS307888</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Fear conditioning is associated with dynamic directed functional interactions between and within the human amygdala, hippocampus and frontal lobe</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>C.C.</given-names>
</name>
<xref ref-type="aff" rid="A1">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Crone</surname>
<given-names>N.E.</given-names>
</name>
<xref ref-type="aff" rid="A2">b</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Franaszczuk</surname>
<given-names>P.J.</given-names>
</name>
<xref ref-type="aff" rid="A2">b</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cheng</surname>
<given-names>D.</given-names>
</name>
<xref ref-type="aff" rid="A2">b</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schretlen</surname>
<given-names>D.S.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lenz</surname>
<given-names>F.A.</given-names>
</name>
<xref ref-type="aff" rid="A1">a</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>a</label>
Department of Neurosurgery, Johns Hopkins University, Baltimore, USA</aff>
<aff id="A2">
<label>b</label>
Department of Neurology, Johns Hopkins University, Baltimore, USA</aff>
<author-notes>
<corresp id="CR1">Address all correspondence and proofs to: Fred A. Lenz Department of Neurosurgery, Johns Hopkins Hospital Meyer Building 8-181 600 North Wolfe Street Baltimore, Maryland, USA. 21287-7713 Telephone - 410-955-2257 FAX - 410-287-4480
<email>flenz1@jhmi.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>30</day>
<month>6</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="epub">
<day>12</day>
<month>6</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="ppub">
<day>25</day>
<month>8</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>25</day>
<month>8</month>
<year>2012</year>
</pub-date>
<volume>189</volume>
<fpage>359</fpage>
<lpage>369</lpage>
<permissions>
<copyright-statement>© 2011 IBRO. Published by Elsevier Ltd. All rights reserved</copyright-statement>
<copyright-year>2011</copyright-year>
</permissions>
<abstract>
<p id="P1">The current model of fear conditioning suggests that it is mediated through modules involving the amygdala (AMY), hippocampus (HIP), and frontal lobe (FL). We now test the hypothesis that habituation and acquisition stages of a fear conditioning protocol are characterized by different event-related causal interactions (ERC) within and between these modules. The protocol employed the painful cutaneous laser as the unconditioned stimulus and ERC was estimated by analysis of local field potentials recorded through electrodes implanted for investigation of epilepsy.</p>
<p id="P2">During the pre-stimulus interval of the habituation stage FL>AMY ERC interactions were common. For comparison, in the post-stimulus interval of the habituation stage only a subdivision of the FL (dorsal lateral prefrontal cortex, dlPFC) still exerted the FL>AMY ERC interaction (dlFC>AMY). For a further comparison, during the poststimulus interval of the acquisition stage the dlPFC>AMY interaction persisted and an AMY>FL interaction appeared.</p>
<p id="P3">In addition to these ERC interactions between modules, the results also show ERC interactions within modules. During the post-stimulus interval HIP>HIP ERC interactions were more common during acquisition, and deep hippocampal contacts exerted causal interactions upon superficial contacts, possibly explained by connectivity between the perihippocampal gyrus and the hippocampus. During the prestimulus interval of the habituation stage AMY>AMY ERC interactions were commonly found, while interactions between the deep and superficial amygdala (indirect pathway) were independent of intervals and stages. These results suggest that the network subserving fear includes distributed or widespread modules, some of which are themselves `local networks'. ERC interactions between and within modules can be either static or change dynamically across intervals or stages of fear conditioning.</p>
</abstract>
<kwd-group>
<kwd>Pain</kwd>
<kwd>Fear</kwd>
<kwd>Network</kwd>
<kwd>Human</kwd>
<kwd>Laser</kwd>
<kwd>Local Field Potentials</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source country="United States">National Institute of Neurological Disorders and Stroke : NINDS</funding-source>
<award-id>R01 NS038493-10 || NS</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000247 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000247 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3150454
   |texte=   Fear conditioning is associated with dynamic directed functional interactions between and within the human amygdala, hippocampus and frontal lobe
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:21664438" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024