Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stability of Cu2Ln2O5 compounds: Comparison, assessment and systematics

Identifieur interne : 000E95 ( Pascal/Curation ); précédent : 000E94; suivant : 000E96

Stability of Cu2Ln2O5 compounds: Comparison, assessment and systematics

Auteurs : K. P. Jayadevan [Inde] ; K. T. Jacob [Inde]

Source :

RBID : Pascal:01-0044104

Descripteurs français

English descriptors

Abstract

Phase diagram studies show that at ambient pressure only one ternary oxide, Cu2Ln2O5, is stable in the ternary systems Cu-Ln-O (Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu) at high temperatures. The crystal structure of Cu2Ln2O5 can be described as a zig-zag arrangement of one-dimensional Cu2O5 chains parallel to the a-axis with Ln atoms occupying distorted octahedral sites between these chains. Four sets of emf measurements on Gibbs energy of formation of Cu2Ln2O5 (Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu; Y) from component binary oxides and one set of high-temperature solution calorimetric data on enthalpy of formation have been reported in the literature. Except for Cu2Y2O5, the measured values for the Gibbs energies of formation of all other Cu2Ln2O5 compounds fall in a narrow band (±1 kJ mol-1) and indicate a regular increase in stability with decreasing ionic radius of the lanthanide ion. The values for the second law enthalpy of formation, derived from the temperature dependence of emf obtained in different studies, show larger differences, as high as 25 kJ mol-1 for Cu2Tm2O5. Though associated with an uncertainty of ±4 kJ mol-1, the calorimetric measurements help to identify the best set of emf data. The trends in thermodynamic data correlate well with the global instability index (GII) based on the overall deviation from the valence sum rule. Low values for the index calculated from crystallographic information indicate higher stability. Higher values are indicative of the larger stress in the structure.
pA  
A01 01  1    @0 0334-6455
A02 01      @0 HTMPEF
A03   1    @0 High temp. mater. progresses
A05       @2 19
A06       @2 6
A08 01  1  ENG  @1 Stability of Cu2Ln2O5 compounds: Comparison, assessment and systematics
A11 01  1    @1 JAYADEVAN (K. P.)
A11 02  1    @1 JACOB (K. T.)
A14 01      @1 Materials Research Center and Department of Metallurgy, Indian Institute of Science @2 Bangalore 560 012 @3 IND @Z 1 aut. @Z 2 aut.
A20       @1 389-397
A21       @1 2000
A23 01      @0 ENG
A43 01      @1 INIST @2 16238 @5 354000093423700030
A44       @0 0000 @1 © 2001 INIST-CNRS. All rights reserved.
A45       @0 24 ref.
A47 01  1    @0 01-0044104
A60       @1 P
A61       @0 A
A64 01  1    @0 High-temperature materials and processes
A66 01      @0 ISR
C01 01    ENG  @0 Phase diagram studies show that at ambient pressure only one ternary oxide, Cu2Ln2O5, is stable in the ternary systems Cu-Ln-O (Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu) at high temperatures. The crystal structure of Cu2Ln2O5 can be described as a zig-zag arrangement of one-dimensional Cu2O5 chains parallel to the a-axis with Ln atoms occupying distorted octahedral sites between these chains. Four sets of emf measurements on Gibbs energy of formation of Cu2Ln2O5 (Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu; Y) from component binary oxides and one set of high-temperature solution calorimetric data on enthalpy of formation have been reported in the literature. Except for Cu2Y2O5, the measured values for the Gibbs energies of formation of all other Cu2Ln2O5 compounds fall in a narrow band (±1 kJ mol-1) and indicate a regular increase in stability with decreasing ionic radius of the lanthanide ion. The values for the second law enthalpy of formation, derived from the temperature dependence of emf obtained in different studies, show larger differences, as high as 25 kJ mol-1 for Cu2Tm2O5. Though associated with an uncertainty of ±4 kJ mol-1, the calorimetric measurements help to identify the best set of emf data. The trends in thermodynamic data correlate well with the global instability index (GII) based on the overall deviation from the valence sum rule. Low values for the index calculated from crystallographic information indicate higher stability. Higher values are indicative of the larger stress in the structure.
C02 01  3    @0 001B80A30D
C03 01  3  FRE  @0 Stabilité thermique @5 01
C03 01  3  ENG  @0 Thermal stability @5 01
C03 02  3  FRE  @0 Propriété thermique @5 02
C03 02  3  ENG  @0 Thermal properties @5 02
C03 03  3  FRE  @0 Diagramme phase @5 03
C03 03  3  ENG  @0 Phase diagrams @5 03
C03 04  3  FRE  @0 Cuivre @2 NC @5 04
C03 04  3  ENG  @0 Copper @2 NC @5 04
C03 05  3  FRE  @0 Oxygène @2 NC @5 05
C03 05  3  ENG  @0 Oxygen @2 NC @5 05
C03 06  3  FRE  @0 Terbium @2 NC @5 06
C03 06  3  ENG  @0 Terbium @2 NC @5 06
C03 07  3  FRE  @0 Système ternaire @5 07
C03 07  3  ENG  @0 Ternary systems @5 07
C03 08  3  FRE  @0 Dysprosium @2 NC @5 08
C03 08  3  ENG  @0 Dysprosium @2 NC @5 08
C03 09  3  FRE  @0 Holmium @2 NC @5 09
C03 09  3  ENG  @0 Holmium @2 NC @5 09
C03 10  3  FRE  @0 Erbium @2 NC @5 10
C03 10  3  ENG  @0 Erbium @2 NC @5 10
C03 11  3  FRE  @0 Structure cristalline @5 11
C03 11  3  ENG  @0 Crystal structure @5 11
C03 12  X  FRE  @0 Maille primitive @5 12
C03 12  X  ENG  @0 Primitive cell @5 12
C03 12  X  SPA  @0 Celda primitiva @5 12
C03 13  3  FRE  @0 Etude expérimentale @5 13
C03 13  3  ENG  @0 Experimental study @5 13
C03 14  3  FRE  @0 Thulium @2 NC @5 23
C03 14  3  ENG  @0 Thulium @2 NC @5 23
C03 15  3  FRE  @0 Ytterbium @2 NC @5 24
C03 15  3  ENG  @0 Ytterbium @2 NC @5 24
C03 16  3  FRE  @0 Système Cu O Tb @2 NK @4 INC @5 32
C03 17  3  FRE  @0 Système Cu Dy O @2 NK @4 INC @5 33
C03 18  3  FRE  @0 8130D @2 PAC @4 INC @5 95
N21       @1 029

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0044104

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Stability of Cu
<sub>2</sub>
Ln
<sub>2</sub>
O
<sub>5</sub>
compounds: Comparison, assessment and systematics</title>
<author>
<name sortKey="Jayadevan, K P" sort="Jayadevan, K P" uniqKey="Jayadevan K" first="K. P." last="Jayadevan">K. P. Jayadevan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Materials Research Center and Department of Metallurgy, Indian Institute of Science</s1>
<s2>Bangalore 560 012</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Inde</country>
</affiliation>
</author>
<author>
<name sortKey="Jacob, K T" sort="Jacob, K T" uniqKey="Jacob K" first="K. T." last="Jacob">K. T. Jacob</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Materials Research Center and Department of Metallurgy, Indian Institute of Science</s1>
<s2>Bangalore 560 012</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Inde</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0044104</idno>
<date when="2000">2000</date>
<idno type="stanalyst">PASCAL 01-0044104 INIST</idno>
<idno type="RBID">Pascal:01-0044104</idno>
<idno type="wicri:Area/Pascal/Corpus">000E95</idno>
<idno type="wicri:Area/Pascal/Curation">000E95</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Stability of Cu
<sub>2</sub>
Ln
<sub>2</sub>
O
<sub>5</sub>
compounds: Comparison, assessment and systematics</title>
<author>
<name sortKey="Jayadevan, K P" sort="Jayadevan, K P" uniqKey="Jayadevan K" first="K. P." last="Jayadevan">K. P. Jayadevan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Materials Research Center and Department of Metallurgy, Indian Institute of Science</s1>
<s2>Bangalore 560 012</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Inde</country>
</affiliation>
</author>
<author>
<name sortKey="Jacob, K T" sort="Jacob, K T" uniqKey="Jacob K" first="K. T." last="Jacob">K. T. Jacob</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Materials Research Center and Department of Metallurgy, Indian Institute of Science</s1>
<s2>Bangalore 560 012</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Inde</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">High-temperature materials and processes</title>
<title level="j" type="abbreviated">High temp. mater. progresses</title>
<idno type="ISSN">0334-6455</idno>
<imprint>
<date when="2000">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">High-temperature materials and processes</title>
<title level="j" type="abbreviated">High temp. mater. progresses</title>
<idno type="ISSN">0334-6455</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Copper</term>
<term>Crystal structure</term>
<term>Dysprosium</term>
<term>Erbium</term>
<term>Experimental study</term>
<term>Holmium</term>
<term>Oxygen</term>
<term>Phase diagrams</term>
<term>Primitive cell</term>
<term>Terbium</term>
<term>Ternary systems</term>
<term>Thermal properties</term>
<term>Thermal stability</term>
<term>Thulium</term>
<term>Ytterbium</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Stabilité thermique</term>
<term>Propriété thermique</term>
<term>Diagramme phase</term>
<term>Cuivre</term>
<term>Oxygène</term>
<term>Terbium</term>
<term>Système ternaire</term>
<term>Dysprosium</term>
<term>Holmium</term>
<term>Erbium</term>
<term>Structure cristalline</term>
<term>Maille primitive</term>
<term>Etude expérimentale</term>
<term>Thulium</term>
<term>Ytterbium</term>
<term>Système Cu O Tb</term>
<term>Système Cu Dy O</term>
<term>8130D</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Cuivre</term>
<term>Oxygène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phase diagram studies show that at ambient pressure only one ternary oxide, Cu
<sub>2</sub>
Ln
<sub>2</sub>
O
<sub>5</sub>
, is stable in the ternary systems Cu-Ln-O (Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu) at high temperatures. The crystal structure of Cu
<sub>2</sub>
Ln
<sub>2</sub>
O
<sub>5</sub>
can be described as a zig-zag arrangement of one-dimensional Cu
<sub>2</sub>
O
<sub>5</sub>
chains parallel to the a-axis with Ln atoms occupying distorted octahedral sites between these chains. Four sets of emf measurements on Gibbs energy of formation of Cu
<sub>2</sub>
Ln
<sub>2</sub>
O
<sub>5</sub>
(Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu; Y) from component binary oxides and one set of high-temperature solution calorimetric data on enthalpy of formation have been reported in the literature. Except for Cu
<sub>2</sub>
Y
<sub>2</sub>
O
<sub>5</sub>
, the measured values for the Gibbs energies of formation of all other Cu
<sub>2</sub>
Ln
<sub>2</sub>
O
<sub>5</sub>
compounds fall in a narrow band (±1 kJ mol
<sup>-1</sup>
) and indicate a regular increase in stability with decreasing ionic radius of the lanthanide ion. The values for the second law enthalpy of formation, derived from the temperature dependence of emf obtained in different studies, show larger differences, as high as 25 kJ mol
<sup>-1</sup>
for Cu
<sub>2</sub>
Tm
<sub>2</sub>
O
<sub>5</sub>
. Though associated with an uncertainty of ±4 kJ mol
<sup>-1</sup>
, the calorimetric measurements help to identify the best set of emf data. The trends in thermodynamic data correlate well with the global instability index (GII) based on the overall deviation from the valence sum rule. Low values for the index calculated from crystallographic information indicate higher stability. Higher values are indicative of the larger stress in the structure.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0334-6455</s0>
</fA01>
<fA02 i1="01">
<s0>HTMPEF</s0>
</fA02>
<fA03 i2="1">
<s0>High temp. mater. progresses</s0>
</fA03>
<fA05>
<s2>19</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Stability of Cu
<sub>2</sub>
Ln
<sub>2</sub>
O
<sub>5</sub>
compounds: Comparison, assessment and systematics</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JAYADEVAN (K. P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JACOB (K. T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Materials Research Center and Department of Metallurgy, Indian Institute of Science</s1>
<s2>Bangalore 560 012</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>389-397</s1>
</fA20>
<fA21>
<s1>2000</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16238</s2>
<s5>354000093423700030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0044104</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>High-temperature materials and processes</s0>
</fA64>
<fA66 i1="01">
<s0>ISR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Phase diagram studies show that at ambient pressure only one ternary oxide, Cu
<sub>2</sub>
Ln
<sub>2</sub>
O
<sub>5</sub>
, is stable in the ternary systems Cu-Ln-O (Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu) at high temperatures. The crystal structure of Cu
<sub>2</sub>
Ln
<sub>2</sub>
O
<sub>5</sub>
can be described as a zig-zag arrangement of one-dimensional Cu
<sub>2</sub>
O
<sub>5</sub>
chains parallel to the a-axis with Ln atoms occupying distorted octahedral sites between these chains. Four sets of emf measurements on Gibbs energy of formation of Cu
<sub>2</sub>
Ln
<sub>2</sub>
O
<sub>5</sub>
(Ln = Tb, Dy, Ho, Er, Tm, Yb, Lu; Y) from component binary oxides and one set of high-temperature solution calorimetric data on enthalpy of formation have been reported in the literature. Except for Cu
<sub>2</sub>
Y
<sub>2</sub>
O
<sub>5</sub>
, the measured values for the Gibbs energies of formation of all other Cu
<sub>2</sub>
Ln
<sub>2</sub>
O
<sub>5</sub>
compounds fall in a narrow band (±1 kJ mol
<sup>-1</sup>
) and indicate a regular increase in stability with decreasing ionic radius of the lanthanide ion. The values for the second law enthalpy of formation, derived from the temperature dependence of emf obtained in different studies, show larger differences, as high as 25 kJ mol
<sup>-1</sup>
for Cu
<sub>2</sub>
Tm
<sub>2</sub>
O
<sub>5</sub>
. Though associated with an uncertainty of ±4 kJ mol
<sup>-1</sup>
, the calorimetric measurements help to identify the best set of emf data. The trends in thermodynamic data correlate well with the global instability index (GII) based on the overall deviation from the valence sum rule. Low values for the index calculated from crystallographic information indicate higher stability. Higher values are indicative of the larger stress in the structure.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A30D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Stabilité thermique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Thermal stability</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Propriété thermique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Thermal properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Diagramme phase</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Phase diagrams</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Terbium</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Terbium</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Système ternaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Ternary systems</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Dysprosium</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Dysprosium</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Holmium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Holmium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Erbium</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Erbium</s0>
<s2>NC</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Maille primitive</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Primitive cell</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Celda primitiva</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Thulium</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Thulium</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Ytterbium</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Ytterbium</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Système Cu O Tb</s0>
<s2>NK</s2>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Système Cu Dy O</s0>
<s2>NK</s2>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>8130D</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>95</s5>
</fC03>
<fN21>
<s1>029</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E95 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Curation/biblio.hfd -nk 000E95 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:01-0044104
   |texte=   Stability of Cu2Ln2O5 compounds: Comparison, assessment and systematics
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024