Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of impurities and thermal treatment on spectroscopic properties and laser performance of thulium-doped yttrium vanadate crystals

Identifieur interne : 000682 ( Pascal/Curation ); précédent : 000681; suivant : 000683

Influence of impurities and thermal treatment on spectroscopic properties and laser performance of thulium-doped yttrium vanadate crystals

Auteurs : R. Lisiecki [Pologne] ; B. Macalik [Pologne] ; G. Dominiak-Dzik [Pologne] ; P. Solarz [Pologne] ; B. Nowak [Pologne] ; W. Ryba-Romanowski [Pologne] ; J. K. Jabczynski [Pologne] ; T. Lukasiewicz [Pologne]

Source :

RBID : Pascal:08-0151929

Descripteurs français

English descriptors

Abstract

Influence of impurities and thermal treatment on spectroscopic properties and laser performance of thulium-doped yttrium vanadate crystals was examined. YVO4 crystals nominally pure, single doped with Tm3+ and co-doped with Tm3+ and Ca2+ were grown by the Czochralski method and then thermally treated at 1150 °C for several hours in a reducing atmosphere (vacuum) or oxidizing atmosphere (air). Samples of crystals were investigated by nuclear magnetic resonance spectroscopy (NMR) and by optical spectroscopy methods. Laser performance of samples was examined upon laser diode pumping. For pure YVO4 and for YVO4 containing 0.5 at. % of Tm a single-site NMR spectrum of 51V nuclei was observed with central line widths of 2.5 and 3.2 kHz (FWHM), respectively. For samples containing 5 at. % of Tm the NMR spectrum was a superposition of multi-site spectra indicating at least three kinds of vanadium sites with axial symmetry. Optical absorption spectra did not contain bands that could be ascribed to V4+ ions in tetragonal sites. Level of matrix absorption in the visible region and its increase with decreasing wavelength from about 600 to 370 nm was found to be substantially dependent on conditions of thermal treatment. Thermal treatment of crystals and additional doping with Ca did not influence the 3F4 lifetime of thulium and laser performance of crystals, however. Infrared absorption spectra revealed OH- contamination in all samples. It has been concluded that the quenching of the 3F4 emission in samples containing 5 at. % of thulium is related to migration-accelerated energy transfer to hydroxyl ions acting as energy sinks.
pA  
A01 01  1    @0 0946-2171
A03   1    @0 Appl. phys., B Lasers opt. : (Print)
A05       @2 90
A06       @2 3-4
A08 01  1  ENG  @1 Influence of impurities and thermal treatment on spectroscopic properties and laser performance of thulium-doped yttrium vanadate crystals
A11 01  1    @1 LISIECKI (R.)
A11 02  1    @1 MACALIK (B.)
A11 03  1    @1 DOMINIAK-DZIK (G.)
A11 04  1    @1 SOLARZ (P.)
A11 05  1    @1 NOWAK (B.)
A11 06  1    @1 RYBA-ROMANOWSKI (W.)
A11 07  1    @1 JABCZYNSKI (J. K.)
A11 08  1    @1 LUKASIEWICZ (T.)
A14 01      @1 Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2 @2 50422 Wroclaw @3 POL @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut.
A14 02      @1 Institute of Optoelectronics, Wolczyńska 133 @2 01-919 Warsaw @3 POL @Z 7 aut.
A14 03      @1 Institute of Electronic Materials Technology, Gen. S. Kaliskiego 2 @2 00-908 Warsaw @3 POL @Z 8 aut.
A20       @1 477-483
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 16194B @5 354000175142180210
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 14 ref.
A47 01  1    @0 08-0151929
A60       @1 P
A61       @0 A
A64 01  1    @0 Applied physics. B, Lasers and optics : (Print)
A66 01      @0 DEU
C01 01    ENG  @0 Influence of impurities and thermal treatment on spectroscopic properties and laser performance of thulium-doped yttrium vanadate crystals was examined. YVO4 crystals nominally pure, single doped with Tm3+ and co-doped with Tm3+ and Ca2+ were grown by the Czochralski method and then thermally treated at 1150 °C for several hours in a reducing atmosphere (vacuum) or oxidizing atmosphere (air). Samples of crystals were investigated by nuclear magnetic resonance spectroscopy (NMR) and by optical spectroscopy methods. Laser performance of samples was examined upon laser diode pumping. For pure YVO4 and for YVO4 containing 0.5 at. % of Tm a single-site NMR spectrum of 51V nuclei was observed with central line widths of 2.5 and 3.2 kHz (FWHM), respectively. For samples containing 5 at. % of Tm the NMR spectrum was a superposition of multi-site spectra indicating at least three kinds of vanadium sites with axial symmetry. Optical absorption spectra did not contain bands that could be ascribed to V4+ ions in tetragonal sites. Level of matrix absorption in the visible region and its increase with decreasing wavelength from about 600 to 370 nm was found to be substantially dependent on conditions of thermal treatment. Thermal treatment of crystals and additional doping with Ca did not influence the 3F4 lifetime of thulium and laser performance of crystals, however. Infrared absorption spectra revealed OH- contamination in all samples. It has been concluded that the quenching of the 3F4 emission in samples containing 5 at. % of thulium is related to migration-accelerated energy transfer to hydroxyl ions acting as energy sinks.
C02 01  3    @0 001B40B70H
C02 02  3    @0 001B40B55X
C02 03  3    @0 001B40B55R
C02 04  3    @0 001B80A40G
C03 01  X  FRE  @0 Traitement matériau @5 03
C03 01  X  ENG  @0 Material processing @5 03
C03 01  X  SPA  @0 Tratamiento material @5 03
C03 02  X  FRE  @0 Pompage par diode @5 04
C03 02  X  ENG  @0 Diode pumping @5 04
C03 02  X  SPA  @0 Bombeo por diodo @5 04
C03 03  X  FRE  @0 Transfert énergie excitation @5 05
C03 03  X  ENG  @0 Excitation energy transfer @5 05
C03 03  X  SPA  @0 Transferencia energía excitación @5 05
C03 04  3  FRE  @0 Laser semiconducteur @5 09
C03 04  3  ENG  @0 Semiconductor lasers @5 09
C03 05  3  FRE  @0 Laser solide @5 11
C03 05  3  ENG  @0 Solid state lasers @5 11
C03 06  3  FRE  @0 Méthode Czochralski @5 30
C03 06  3  ENG  @0 Czochralski method @5 30
C03 07  X  FRE  @0 Méthode optique @5 31
C03 07  X  ENG  @0 Optical method @5 31
C03 07  X  SPA  @0 Método óptico @5 31
C03 08  3  FRE  @0 Résonance magnétique nucléaire @5 32
C03 08  3  ENG  @0 Nuclear magnetic resonance @5 32
C03 09  3  FRE  @0 Traitement thermique @5 33
C03 09  3  ENG  @0 Heat treatments @5 33
C03 10  3  FRE  @0 Largeur raie @5 41
C03 10  3  ENG  @0 Line widths @5 41
C03 11  3  FRE  @0 Spectre absorption @5 42
C03 11  3  ENG  @0 Absorption spectra @5 42
C03 12  3  FRE  @0 Durée vie @5 43
C03 12  3  ENG  @0 Lifetime @5 43
C03 13  3  FRE  @0 Spectre IR @5 44
C03 13  3  ENG  @0 Infrared spectra @5 44
C03 14  3  FRE  @0 Spectre visible @5 45
C03 14  3  ENG  @0 Visible spectra @5 45
C03 15  3  FRE  @0 Matériau dopé @5 50
C03 15  3  ENG  @0 Doped materials @5 50
C03 16  3  FRE  @0 Matériau optique @5 51
C03 16  3  ENG  @0 Optical materials @5 51
C03 17  X  FRE  @0 Codopage @5 57
C03 17  X  ENG  @0 Codoping @5 57
C03 17  X  SPA  @0 Codrogado @5 57
C03 18  3  FRE  @0 Matériau laser @5 58
C03 18  3  ENG  @0 Laser materials @5 58
C03 19  3  FRE  @0 Addition thulium @5 61
C03 19  3  ENG  @0 Thulium additions @5 61
C03 20  3  FRE  @0 Evaluation performance @5 62
C03 20  3  ENG  @0 Performance evaluation @5 62
C03 21  3  FRE  @0 Yttrium Vanadate @2 NC @2 NA @5 63
C03 21  3  ENG  @0 Yttrium Vanadates @2 NC @2 NA @5 63
C03 22  3  FRE  @0 Addition calcium @5 65
C03 22  3  ENG  @0 Calcium additions @5 65
C03 23  3  FRE  @0 Contamination @5 66
C03 23  3  ENG  @0 Contamination @5 66
C03 24  X  FRE  @0 Hydroxyle @5 67
C03 24  X  ENG  @0 Hydroxyl @5 67
C03 24  X  SPA  @0 Hidroxilo @5 67
C03 25  3  FRE  @0 Croissance cristalline en phase fondue @5 68
C03 25  3  ENG  @0 Crystal growth from melts @5 68
C03 26  3  FRE  @0 4270H @4 INC @5 83
C03 27  3  FRE  @0 4255R @4 INC @5 84
C03 28  3  FRE  @0 8140G @4 INC @5 85
C03 29  3  FRE  @0 4255X @4 INC @5 92
N21       @1 091

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0151929

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Influence of impurities and thermal treatment on spectroscopic properties and laser performance of thulium-doped yttrium vanadate crystals</title>
<author>
<name sortKey="Lisiecki, R" sort="Lisiecki, R" uniqKey="Lisiecki R" first="R." last="Lisiecki">R. Lisiecki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2</s1>
<s2>50422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Macalik, B" sort="Macalik, B" uniqKey="Macalik B" first="B." last="Macalik">B. Macalik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2</s1>
<s2>50422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Dominiak Dzik, G" sort="Dominiak Dzik, G" uniqKey="Dominiak Dzik G" first="G." last="Dominiak-Dzik">G. Dominiak-Dzik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2</s1>
<s2>50422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Solarz, P" sort="Solarz, P" uniqKey="Solarz P" first="P." last="Solarz">P. Solarz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2</s1>
<s2>50422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Nowak, B" sort="Nowak, B" uniqKey="Nowak B" first="B." last="Nowak">B. Nowak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2</s1>
<s2>50422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Ryba Romanowski, W" sort="Ryba Romanowski, W" uniqKey="Ryba Romanowski W" first="W." last="Ryba-Romanowski">W. Ryba-Romanowski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2</s1>
<s2>50422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Jabczynski, J K" sort="Jabczynski, J K" uniqKey="Jabczynski J" first="J. K." last="Jabczynski">J. K. Jabczynski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Optoelectronics, Wolczyńska 133</s1>
<s2>01-919 Warsaw</s2>
<s3>POL</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Lukasiewicz, T" sort="Lukasiewicz, T" uniqKey="Lukasiewicz T" first="T." last="Lukasiewicz">T. Lukasiewicz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Electronic Materials Technology, Gen. S. Kaliskiego 2</s1>
<s2>00-908 Warsaw</s2>
<s3>POL</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0151929</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0151929 INIST</idno>
<idno type="RBID">Pascal:08-0151929</idno>
<idno type="wicri:Area/Pascal/Corpus">000682</idno>
<idno type="wicri:Area/Pascal/Curation">000682</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Influence of impurities and thermal treatment on spectroscopic properties and laser performance of thulium-doped yttrium vanadate crystals</title>
<author>
<name sortKey="Lisiecki, R" sort="Lisiecki, R" uniqKey="Lisiecki R" first="R." last="Lisiecki">R. Lisiecki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2</s1>
<s2>50422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Macalik, B" sort="Macalik, B" uniqKey="Macalik B" first="B." last="Macalik">B. Macalik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2</s1>
<s2>50422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Dominiak Dzik, G" sort="Dominiak Dzik, G" uniqKey="Dominiak Dzik G" first="G." last="Dominiak-Dzik">G. Dominiak-Dzik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2</s1>
<s2>50422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Solarz, P" sort="Solarz, P" uniqKey="Solarz P" first="P." last="Solarz">P. Solarz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2</s1>
<s2>50422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Nowak, B" sort="Nowak, B" uniqKey="Nowak B" first="B." last="Nowak">B. Nowak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2</s1>
<s2>50422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Ryba Romanowski, W" sort="Ryba Romanowski, W" uniqKey="Ryba Romanowski W" first="W." last="Ryba-Romanowski">W. Ryba-Romanowski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2</s1>
<s2>50422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Jabczynski, J K" sort="Jabczynski, J K" uniqKey="Jabczynski J" first="J. K." last="Jabczynski">J. K. Jabczynski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Optoelectronics, Wolczyńska 133</s1>
<s2>01-919 Warsaw</s2>
<s3>POL</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Lukasiewicz, T" sort="Lukasiewicz, T" uniqKey="Lukasiewicz T" first="T." last="Lukasiewicz">T. Lukasiewicz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Electronic Materials Technology, Gen. S. Kaliskiego 2</s1>
<s2>00-908 Warsaw</s2>
<s3>POL</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Applied physics. B, Lasers and optics : (Print)</title>
<title level="j" type="abbreviated">Appl. phys., B Lasers opt. : (Print)</title>
<idno type="ISSN">0946-2171</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Applied physics. B, Lasers and optics : (Print)</title>
<title level="j" type="abbreviated">Appl. phys., B Lasers opt. : (Print)</title>
<idno type="ISSN">0946-2171</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectra</term>
<term>Calcium additions</term>
<term>Codoping</term>
<term>Contamination</term>
<term>Crystal growth from melts</term>
<term>Czochralski method</term>
<term>Diode pumping</term>
<term>Doped materials</term>
<term>Excitation energy transfer</term>
<term>Heat treatments</term>
<term>Hydroxyl</term>
<term>Infrared spectra</term>
<term>Laser materials</term>
<term>Lifetime</term>
<term>Line widths</term>
<term>Material processing</term>
<term>Nuclear magnetic resonance</term>
<term>Optical materials</term>
<term>Optical method</term>
<term>Performance evaluation</term>
<term>Semiconductor lasers</term>
<term>Solid state lasers</term>
<term>Thulium additions</term>
<term>Visible spectra</term>
<term>Yttrium Vanadates</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Traitement matériau</term>
<term>Pompage par diode</term>
<term>Transfert énergie excitation</term>
<term>Laser semiconducteur</term>
<term>Laser solide</term>
<term>Méthode Czochralski</term>
<term>Méthode optique</term>
<term>Résonance magnétique nucléaire</term>
<term>Traitement thermique</term>
<term>Largeur raie</term>
<term>Spectre absorption</term>
<term>Durée vie</term>
<term>Spectre IR</term>
<term>Spectre visible</term>
<term>Matériau dopé</term>
<term>Matériau optique</term>
<term>Codopage</term>
<term>Matériau laser</term>
<term>Addition thulium</term>
<term>Evaluation performance</term>
<term>Yttrium Vanadate</term>
<term>Addition calcium</term>
<term>Contamination</term>
<term>Hydroxyle</term>
<term>Croissance cristalline en phase fondue</term>
<term>4270H</term>
<term>4255R</term>
<term>8140G</term>
<term>4255X</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Influence of impurities and thermal treatment on spectroscopic properties and laser performance of thulium-doped yttrium vanadate crystals was examined. YVO
<sub>4</sub>
crystals nominally pure, single doped with Tm
<sup>3+</sup>
and co-doped with Tm
<sup>3+</sup>
and Ca
<sup>2+</sup>
were grown by the Czochralski method and then thermally treated at 1150 °C for several hours in a reducing atmosphere (vacuum) or oxidizing atmosphere (air). Samples of crystals were investigated by nuclear magnetic resonance spectroscopy (NMR) and by optical spectroscopy methods. Laser performance of samples was examined upon laser diode pumping. For pure YVO
<sub>4</sub>
and for YVO
<sub>4</sub>
containing 0.5 at. % of Tm a single-site NMR spectrum of
<sup>51</sup>
V nuclei was observed with central line widths of 2.5 and 3.2 kHz (FWHM), respectively. For samples containing 5 at. % of Tm the NMR spectrum was a superposition of multi-site spectra indicating at least three kinds of vanadium sites with axial symmetry. Optical absorption spectra did not contain bands that could be ascribed to V
<sup>4+</sup>
ions in tetragonal sites. Level of matrix absorption in the visible region and its increase with decreasing wavelength from about 600 to 370 nm was found to be substantially dependent on conditions of thermal treatment. Thermal treatment of crystals and additional doping with Ca did not influence the
<sup>3</sup>
F
<sub>4</sub>
lifetime of thulium and laser performance of crystals, however. Infrared absorption spectra revealed OH
<sup>-</sup>
contamination in all samples. It has been concluded that the quenching of the
<sup>3</sup>
F
<sub>4</sub>
emission in samples containing 5 at. % of thulium is related to migration-accelerated energy transfer to hydroxyl ions acting as energy sinks.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0946-2171</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. phys., B Lasers opt. : (Print)</s0>
</fA03>
<fA05>
<s2>90</s2>
</fA05>
<fA06>
<s2>3-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Influence of impurities and thermal treatment on spectroscopic properties and laser performance of thulium-doped yttrium vanadate crystals</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LISIECKI (R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MACALIK (B.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DOMINIAK-DZIK (G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SOLARZ (P.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>NOWAK (B.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RYBA-ROMANOWSKI (W.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>JABCZYNSKI (J. K.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LUKASIEWICZ (T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2</s1>
<s2>50422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Optoelectronics, Wolczyńska 133</s1>
<s2>01-919 Warsaw</s2>
<s3>POL</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Electronic Materials Technology, Gen. S. Kaliskiego 2</s1>
<s2>00-908 Warsaw</s2>
<s3>POL</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>477-483</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16194B</s2>
<s5>354000175142180210</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0151929</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics. B, Lasers and optics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Influence of impurities and thermal treatment on spectroscopic properties and laser performance of thulium-doped yttrium vanadate crystals was examined. YVO
<sub>4</sub>
crystals nominally pure, single doped with Tm
<sup>3+</sup>
and co-doped with Tm
<sup>3+</sup>
and Ca
<sup>2+</sup>
were grown by the Czochralski method and then thermally treated at 1150 °C for several hours in a reducing atmosphere (vacuum) or oxidizing atmosphere (air). Samples of crystals were investigated by nuclear magnetic resonance spectroscopy (NMR) and by optical spectroscopy methods. Laser performance of samples was examined upon laser diode pumping. For pure YVO
<sub>4</sub>
and for YVO
<sub>4</sub>
containing 0.5 at. % of Tm a single-site NMR spectrum of
<sup>51</sup>
V nuclei was observed with central line widths of 2.5 and 3.2 kHz (FWHM), respectively. For samples containing 5 at. % of Tm the NMR spectrum was a superposition of multi-site spectra indicating at least three kinds of vanadium sites with axial symmetry. Optical absorption spectra did not contain bands that could be ascribed to V
<sup>4+</sup>
ions in tetragonal sites. Level of matrix absorption in the visible region and its increase with decreasing wavelength from about 600 to 370 nm was found to be substantially dependent on conditions of thermal treatment. Thermal treatment of crystals and additional doping with Ca did not influence the
<sup>3</sup>
F
<sub>4</sub>
lifetime of thulium and laser performance of crystals, however. Infrared absorption spectra revealed OH
<sup>-</sup>
contamination in all samples. It has been concluded that the quenching of the
<sup>3</sup>
F
<sub>4</sub>
emission in samples containing 5 at. % of thulium is related to migration-accelerated energy transfer to hydroxyl ions acting as energy sinks.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B70H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B55X</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B40B55R</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A40G</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Traitement matériau</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Material processing</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Tratamiento material</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Pompage par diode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Diode pumping</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Bombeo por diodo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Transfert énergie excitation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Excitation energy transfer</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Transferencia energía excitación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Laser solide</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Solid state lasers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Méthode Czochralski</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Czochralski method</s0>
<s5>30</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Méthode optique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Optical method</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Método óptico</s0>
<s5>31</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Résonance magnétique nucléaire</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nuclear magnetic resonance</s0>
<s5>32</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>33</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Largeur raie</s0>
<s5>41</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Line widths</s0>
<s5>41</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>42</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>42</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Durée vie</s0>
<s5>43</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Lifetime</s0>
<s5>43</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Spectre IR</s0>
<s5>44</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Infrared spectra</s0>
<s5>44</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Spectre visible</s0>
<s5>45</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Visible spectra</s0>
<s5>45</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>50</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>50</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Matériau optique</s0>
<s5>51</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Optical materials</s0>
<s5>51</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Codopage</s0>
<s5>57</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Codoping</s0>
<s5>57</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Codrogado</s0>
<s5>57</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Matériau laser</s0>
<s5>58</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Laser materials</s0>
<s5>58</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Addition thulium</s0>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Thulium additions</s0>
<s5>61</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Evaluation performance</s0>
<s5>62</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Performance evaluation</s0>
<s5>62</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Yttrium Vanadate</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>63</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Yttrium Vanadates</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>63</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Addition calcium</s0>
<s5>65</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Calcium additions</s0>
<s5>65</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Contamination</s0>
<s5>66</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Contamination</s0>
<s5>66</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Hydroxyle</s0>
<s5>67</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Hydroxyl</s0>
<s5>67</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Hidroxilo</s0>
<s5>67</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Croissance cristalline en phase fondue</s0>
<s5>68</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Crystal growth from melts</s0>
<s5>68</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>4270H</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>4255R</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8140G</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>4255X</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fN21>
<s1>091</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000682 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Curation/biblio.hfd -nk 000682 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:08-0151929
   |texte=   Influence of impurities and thermal treatment on spectroscopic properties and laser performance of thulium-doped yttrium vanadate crystals
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024