Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fiber lasers : new effective sources for coherent lidars

Identifieur interne : 000620 ( Pascal/Curation ); précédent : 000619; suivant : 000621

Fiber lasers : new effective sources for coherent lidars

Auteurs : Jean-Pierre Cariou [France] ; Matthieu Valla [France] ; Guillaume Canat [France]

Source :

RBID : Pascal:08-0383673

Descripteurs français

English descriptors

Abstract

Originally developed for telecommunications, fiber lasers are now becoming new effective sources for coherent lidars allowing new instruments to be designed. The advent of the double clad fiber, along with advances in semiconductor pump diode sources, have allowed rapid power scaling of both pulsed and CW fiber sources. The unique capabilities of fiber sources, coupled with significant commercial and academic progress in implementation, have driven fiber technology to enter active remote sensing markets as signal sources and amplification stages for direct detection lidars and coherent lidars as well. Some interesting fiber lasers benefit from a good transmission in the near infrared spectral band: Ytterbium lasers (1.0-1.06μm), Erbium lasers (1.48-1.62μm) and Thulium lasers (1.8-2.1μm). However, useful wavelengths have to be tuned between absorption H20 and C02 lines. Eye safety may be an issue for atmospheric lidars. Above 1.4 μm, the maximum permitted exposure (MPE) is 3 orders of magnitude higher than for shorter wavelengths and an eye-safe operation is possible even with multi-watt lasers. Low power fiber lasers using single mode fibers have a good spatial quality. However, higher power lasers and amplifiers need larger fiber cores, to store enough energy and to avoid non linear effects. Trade-off between high power, single mode operation, stable polarization and spectral quality need to be considered for coherent lidars.
pA  
A01 01  1    @0 0277-786X
A05       @2 6750
A08 01  1  ENG  @1 Fiber lasers : new effective sources for coherent lidars
A09 01  1  ENG  @1 Lidar technologies, techniques, and measurements for atmospheric remote sensing III : 17 September 2007, Florence, Italy
A11 01  1    @1 CARIOU (Jean-Pierre)
A11 02  1    @1 VALLA (Matthieu)
A11 03  1    @1 CANAT (Guillaume)
A12 01  1    @1 SINGH (Upendra N.) @9 ed.
A12 02  1    @1 PAPPALARDO (Gelsomina) @9 ed.
A14 01      @1 LEOSPHERE, Bat 503, Centre Scientifique d'Orsay @2 91400 Orsay @3 FRA @Z 1 aut.
A14 02      @1 ONERA/DOTA, Chemin de la Hunière @2 91761 Palaiseau @3 FRA @Z 2 aut. @Z 3 aut.
A18 01  1    @1 SPIE @3 USA @9 org-cong.
A20       @2 675007.1-675007.12
A21       @1 2007
A23 01      @0 ENG
A26 01      @0 978-0-8194-6908-3
A43 01      @1 INIST @2 21760 @5 354000172837310050
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 22 ref.
A47 01  1    @0 08-0383673
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Proceedings of SPIE - The International Society for Optical Engineering
A66 01      @0 USA
C01 01    ENG  @0 Originally developed for telecommunications, fiber lasers are now becoming new effective sources for coherent lidars allowing new instruments to be designed. The advent of the double clad fiber, along with advances in semiconductor pump diode sources, have allowed rapid power scaling of both pulsed and CW fiber sources. The unique capabilities of fiber sources, coupled with significant commercial and academic progress in implementation, have driven fiber technology to enter active remote sensing markets as signal sources and amplification stages for direct detection lidars and coherent lidars as well. Some interesting fiber lasers benefit from a good transmission in the near infrared spectral band: Ytterbium lasers (1.0-1.06μm), Erbium lasers (1.48-1.62μm) and Thulium lasers (1.8-2.1μm). However, useful wavelengths have to be tuned between absorption H20 and C02 lines. Eye safety may be an issue for atmospheric lidars. Above 1.4 μm, the maximum permitted exposure (MPE) is 3 orders of magnitude higher than for shorter wavelengths and an eye-safe operation is possible even with multi-watt lasers. Low power fiber lasers using single mode fibers have a good spatial quality. However, higher power lasers and amplifiers need larger fiber cores, to store enough energy and to avoid non linear effects. Trade-off between high power, single mode operation, stable polarization and spectral quality need to be considered for coherent lidars.
C02 01  3    @0 001B00A30C
C02 02  3    @0 001B40B68W
C02 03  X    @0 001D04B08
C03 01  3  FRE  @0 Communication fibre optique @5 03
C03 01  3  ENG  @0 Optical fiber communication @5 03
C03 02  X  FRE  @0 Effet non linéaire @5 04
C03 02  X  ENG  @0 Non linear effect @5 04
C03 02  X  SPA  @0 Efecto no lineal @5 04
C03 03  3  FRE  @0 Lidar @5 11
C03 03  3  ENG  @0 Lidar @5 11
C03 04  3  FRE  @0 Télécommunication optique @5 17
C03 04  3  ENG  @0 Optical communication @5 17
C03 05  3  FRE  @0 Télédétection @5 30
C03 05  3  ENG  @0 Remote sensing @5 30
C03 06  3  FRE  @0 Fibre optique @5 47
C03 06  3  ENG  @0 Optical fibers @5 47
C03 07  X  FRE  @0 Fibre double gaine @5 48
C03 07  X  ENG  @0 Doubly clad fiber @5 48
C03 07  X  SPA  @0 Fibra chapado doble @5 48
C03 08  X  FRE  @0 Fibre monomode @5 49
C03 08  X  ENG  @0 Single mode fiber @5 49
C03 08  X  SPA  @0 Fibra monomoda @5 49
C03 09  3  FRE  @0 Ytterbium @2 NC @5 61
C03 09  3  ENG  @0 Ytterbium @2 NC @5 61
C03 10  3  FRE  @0 Thulium @2 NC @5 62
C03 10  3  ENG  @0 Thulium @2 NC @5 62
C03 11  3  FRE  @0 Oeil @5 63
C03 11  3  ENG  @0 Eyes @5 63
C03 12  3  FRE  @0 Méthode mesure @5 64
C03 12  3  ENG  @0 Measuring methods @5 64
C03 13  X  FRE  @0 Méthode optique @5 65
C03 13  X  ENG  @0 Optical method @5 65
C03 13  X  SPA  @0 Método óptico @5 65
C03 14  3  FRE  @0 Optique atmosphérique @5 66
C03 14  3  ENG  @0 Atmospheric optics @5 66
C03 15  3  FRE  @0 0130C @4 INC @5 83
C03 16  3  FRE  @0 4268W @4 INC @5 84
C03 17  3  FRE  @0 4279S @4 INC @5 91
N21       @1 245
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 Lidar technologies, techniques, and measurements for atmospheric remote sensing @2 3 @3 Florence ITA @4 2007

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0383673

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Fiber lasers : new effective sources for coherent lidars</title>
<author>
<name sortKey="Cariou, Jean Pierre" sort="Cariou, Jean Pierre" uniqKey="Cariou J" first="Jean-Pierre" last="Cariou">Jean-Pierre Cariou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LEOSPHERE, Bat 503, Centre Scientifique d'Orsay</s1>
<s2>91400 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Valla, Matthieu" sort="Valla, Matthieu" uniqKey="Valla M" first="Matthieu" last="Valla">Matthieu Valla</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>ONERA/DOTA, Chemin de la Hunière</s1>
<s2>91761 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Canat, Guillaume" sort="Canat, Guillaume" uniqKey="Canat G" first="Guillaume" last="Canat">Guillaume Canat</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>ONERA/DOTA, Chemin de la Hunière</s1>
<s2>91761 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0383673</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 08-0383673 INIST</idno>
<idno type="RBID">Pascal:08-0383673</idno>
<idno type="wicri:Area/Pascal/Corpus">000620</idno>
<idno type="wicri:Area/Pascal/Curation">000620</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Fiber lasers : new effective sources for coherent lidars</title>
<author>
<name sortKey="Cariou, Jean Pierre" sort="Cariou, Jean Pierre" uniqKey="Cariou J" first="Jean-Pierre" last="Cariou">Jean-Pierre Cariou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LEOSPHERE, Bat 503, Centre Scientifique d'Orsay</s1>
<s2>91400 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Valla, Matthieu" sort="Valla, Matthieu" uniqKey="Valla M" first="Matthieu" last="Valla">Matthieu Valla</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>ONERA/DOTA, Chemin de la Hunière</s1>
<s2>91761 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Canat, Guillaume" sort="Canat, Guillaume" uniqKey="Canat G" first="Guillaume" last="Canat">Guillaume Canat</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>ONERA/DOTA, Chemin de la Hunière</s1>
<s2>91761 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Proceedings of SPIE - The International Society for Optical Engineering</title>
<idno type="ISSN">0277-786X</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Proceedings of SPIE - The International Society for Optical Engineering</title>
<idno type="ISSN">0277-786X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atmospheric optics</term>
<term>Doubly clad fiber</term>
<term>Eyes</term>
<term>Lidar</term>
<term>Measuring methods</term>
<term>Non linear effect</term>
<term>Optical communication</term>
<term>Optical fiber communication</term>
<term>Optical fibers</term>
<term>Optical method</term>
<term>Remote sensing</term>
<term>Single mode fiber</term>
<term>Thulium</term>
<term>Ytterbium</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Communication fibre optique</term>
<term>Effet non linéaire</term>
<term>Lidar</term>
<term>Télécommunication optique</term>
<term>Télédétection</term>
<term>Fibre optique</term>
<term>Fibre double gaine</term>
<term>Fibre monomode</term>
<term>Ytterbium</term>
<term>Thulium</term>
<term>Oeil</term>
<term>Méthode mesure</term>
<term>Méthode optique</term>
<term>Optique atmosphérique</term>
<term>0130C</term>
<term>4268W</term>
<term>4279S</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Télédétection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Originally developed for telecommunications, fiber lasers are now becoming new effective sources for coherent lidars allowing new instruments to be designed. The advent of the double clad fiber, along with advances in semiconductor pump diode sources, have allowed rapid power scaling of both pulsed and CW fiber sources. The unique capabilities of fiber sources, coupled with significant commercial and academic progress in implementation, have driven fiber technology to enter active remote sensing markets as signal sources and amplification stages for direct detection lidars and coherent lidars as well. Some interesting fiber lasers benefit from a good transmission in the near infrared spectral band: Ytterbium lasers (1.0-1.06μm), Erbium lasers (1.48-1.62μm) and Thulium lasers (1.8-2.1μm). However, useful wavelengths have to be tuned between absorption H20 and C02 lines. Eye safety may be an issue for atmospheric lidars. Above 1.4 μm, the maximum permitted exposure (MPE) is 3 orders of magnitude higher than for shorter wavelengths and an eye-safe operation is possible even with multi-watt lasers. Low power fiber lasers using single mode fibers have a good spatial quality. However, higher power lasers and amplifiers need larger fiber cores, to store enough energy and to avoid non linear effects. Trade-off between high power, single mode operation, stable polarization and spectral quality need to be considered for coherent lidars.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA05>
<s2>6750</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Fiber lasers : new effective sources for coherent lidars</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Lidar technologies, techniques, and measurements for atmospheric remote sensing III : 17 September 2007, Florence, Italy</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>CARIOU (Jean-Pierre)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>VALLA (Matthieu)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CANAT (Guillaume)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SINGH (Upendra N.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>PAPPALARDO (Gelsomina)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>LEOSPHERE, Bat 503, Centre Scientifique d'Orsay</s1>
<s2>91400 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>ONERA/DOTA, Chemin de la Hunière</s1>
<s2>91761 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>675007.1-675007.12</s2>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>978-0-8194-6908-3</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000172837310050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0383673</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE - The International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Originally developed for telecommunications, fiber lasers are now becoming new effective sources for coherent lidars allowing new instruments to be designed. The advent of the double clad fiber, along with advances in semiconductor pump diode sources, have allowed rapid power scaling of both pulsed and CW fiber sources. The unique capabilities of fiber sources, coupled with significant commercial and academic progress in implementation, have driven fiber technology to enter active remote sensing markets as signal sources and amplification stages for direct detection lidars and coherent lidars as well. Some interesting fiber lasers benefit from a good transmission in the near infrared spectral band: Ytterbium lasers (1.0-1.06μm), Erbium lasers (1.48-1.62μm) and Thulium lasers (1.8-2.1μm). However, useful wavelengths have to be tuned between absorption H20 and C02 lines. Eye safety may be an issue for atmospheric lidars. Above 1.4 μm, the maximum permitted exposure (MPE) is 3 orders of magnitude higher than for shorter wavelengths and an eye-safe operation is possible even with multi-watt lasers. Low power fiber lasers using single mode fibers have a good spatial quality. However, higher power lasers and amplifiers need larger fiber cores, to store enough energy and to avoid non linear effects. Trade-off between high power, single mode operation, stable polarization and spectral quality need to be considered for coherent lidars.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B68W</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D04B08</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Communication fibre optique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical fiber communication</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Effet non linéaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Non linear effect</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Efecto no lineal</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Lidar</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Lidar</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Télécommunication optique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Optical communication</s0>
<s5>17</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Télédétection</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Remote sensing</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Fibre optique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Optical fibers</s0>
<s5>47</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Fibre double gaine</s0>
<s5>48</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Doubly clad fiber</s0>
<s5>48</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Fibra chapado doble</s0>
<s5>48</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Fibre monomode</s0>
<s5>49</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Single mode fiber</s0>
<s5>49</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fibra monomoda</s0>
<s5>49</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Ytterbium</s0>
<s2>NC</s2>
<s5>61</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Ytterbium</s0>
<s2>NC</s2>
<s5>61</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Thulium</s0>
<s2>NC</s2>
<s5>62</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Thulium</s0>
<s2>NC</s2>
<s5>62</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Oeil</s0>
<s5>63</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Eyes</s0>
<s5>63</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Méthode mesure</s0>
<s5>64</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Measuring methods</s0>
<s5>64</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Méthode optique</s0>
<s5>65</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Optical method</s0>
<s5>65</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Método óptico</s0>
<s5>65</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Optique atmosphérique</s0>
<s5>66</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Atmospheric optics</s0>
<s5>66</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>4268W</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>4279S</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>245</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Lidar technologies, techniques, and measurements for atmospheric remote sensing</s1>
<s2>3</s2>
<s3>Florence ITA</s3>
<s4>2007</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000620 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Curation/biblio.hfd -nk 000620 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:08-0383673
   |texte=   Fiber lasers : new effective sources for coherent lidars
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024