Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The energy transfer processes between the Er3+ and Tm3+ in Er, Tm-codoped-NaY(WO4)2 crystal

Identifieur interne : 000A06 ( Pascal/Corpus ); précédent : 000A05; suivant : 000A07

The energy transfer processes between the Er3+ and Tm3+ in Er, Tm-codoped-NaY(WO4)2 crystal

Auteurs : FENG SONG ; JING SU ; HAO TAN ; LIN HAN ; BO FU ; JIANGUO TIAN ; GUANGYIN ZHANG ; ZHENXIANG CHENG ; HUANCHU CHEN

Source :

RBID : Pascal:05-0006568

Descripteurs français

English descriptors

Abstract

Er3+,Tm3+-codoped NaY(WO4)2 crystal was prepared by using Czochralski (CZ) pulling method. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Such optical parameters as intensity parameters, spontaneous emission probabilities, branch ratios and lifetimes are calculated from absorption spectra with Judd-Ofelt theory. Transition processes of the energy levels of Er3+, Tm3+ are analyzed in details and the cross-relaxations: 1G4(Tm3+) + 4I15/2(Er3+) → 3F2(Tm3+) + 4I13/2(Er3+). 1G4(Tm3+) + 4I15/2(Er3+) → 3F4(Tm3+) + 4F9/2(Er3+) and 3H4(Tm3+) + 4I9/2(Er3+) → 3F4(Tm3+) + 4S3/2(Er3+) or 2H11/2 between the two ions are put forward. Through the experiments, we have found that, in this crystal, Tm3+ strengthens luminescence of Er3+ in the green and red regions evidently. The above energy transfer processes provide potential applications of Tm3+ in Er3+-doped laser materials.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0030-4018
A02 01      @0 OPCOB8
A03   1    @0 Opt. commun.
A05       @2 241
A06       @2 4-6
A08 01  1  ENG  @1 The energy transfer processes between the Er3+ and Tm3+ in Er, Tm-codoped-NaY(WO4)2 crystal
A11 01  1    @1 FENG SONG
A11 02  1    @1 JING SU
A11 03  1    @1 HAO TAN
A11 04  1    @1 LIN HAN
A11 05  1    @1 BO FU
A11 06  1    @1 JIANGUO TIAN
A11 07  1    @1 GUANGYIN ZHANG
A11 08  1    @1 ZHENXIANG CHENG
A11 09  1    @1 HUANCHU CHEN
A14 01      @1 Photonics Center, College of Physics Sciences, Nankai University @2 Tianjin, 300071 @3 CHN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut.
A14 02      @1 Institute of Crystal, Shandong University @2 Jinan, Shandong Province @3 CHN @Z 8 aut. @Z 9 aut.
A20       @1 455-463
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 14750 @5 354000120499390280
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 31 ref.
A47 01  1    @0 05-0006568
A60       @1 P
A61       @0 A
A64 01  1    @0 Optics communications
A66 01      @0 NLD
C01 01    ENG  @0 Er3+,Tm3+-codoped NaY(WO4)2 crystal was prepared by using Czochralski (CZ) pulling method. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Such optical parameters as intensity parameters, spontaneous emission probabilities, branch ratios and lifetimes are calculated from absorption spectra with Judd-Ofelt theory. Transition processes of the energy levels of Er3+, Tm3+ are analyzed in details and the cross-relaxations: 1G4(Tm3+) + 4I15/2(Er3+) → 3F2(Tm3+) + 4I13/2(Er3+). 1G4(Tm3+) + 4I15/2(Er3+) → 3F4(Tm3+) + 4F9/2(Er3+) and 3H4(Tm3+) + 4I9/2(Er3+) → 3F4(Tm3+) + 4S3/2(Er3+) or 2H11/2 between the two ions are put forward. Through the experiments, we have found that, in this crystal, Tm3+ strengthens luminescence of Er3+ in the green and red regions evidently. The above energy transfer processes provide potential applications of Tm3+ in Er3+-doped laser materials.
C02 01  3    @0 001B40B70H
C02 02  3    @0 001B70H55H
C03 01  3  FRE  @0 Niveau énergie @5 45
C03 01  3  ENG  @0 Energy levels @5 45
C03 02  3  FRE  @0 Matériau optique @5 50
C03 02  3  ENG  @0 Optical materials @5 50
C03 03  X  FRE  @0 Erbium III @2 NC @5 51 @6 Erbium «III»
C03 03  X  ENG  @0 Erbium III @2 NC @5 51 @6 Erbium «III»
C03 03  X  SPA  @0 Erbio III @2 NC @5 51 @6 Erbio «III»
C03 04  X  FRE  @0 Thulium III @2 NC @5 52 @6 Thulium «III»
C03 04  X  ENG  @0 Thulium III @2 NC @5 52 @6 Thulium «III»
C03 04  X  SPA  @0 Tulio III @2 NC @5 52 @6 Tulio «III»
C03 05  3  FRE  @0 Matériau dopé @5 53 @6 Matériau dopé
C03 05  3  ENG  @0 Doped materials @5 53 @6 Doped materials
C03 06  3  FRE  @0 Potassium Yttrium Tungstate @2 NC @2 NA @5 54 @6 Potassium Yttrium Tungstate
C03 06  3  ENG  @0 Potassium Yttrium Tungstates @2 NC @2 NA @5 54 @6 Potassium Yttrium Tungstates
C03 07  3  FRE  @0 Transfert énergie @5 55 @6 Transfert énergie
C03 07  3  ENG  @0 Energy transfer @5 55 @6 Energy transfer
C03 08  3  FRE  @0 Croissance cristalline @5 56 @6 Croissance cristalline
C03 08  3  ENG  @0 Crystal growth @5 56 @6 Crystal growth
C03 09  3  FRE  @0 Méthode Czochralski @5 57 @6 Méthode Czochralski
C03 09  3  ENG  @0 Czochralski method @5 57 @6 Czochralski method
C03 10  3  FRE  @0 Matériau laser @5 58 @6 Matériau laser
C03 10  3  ENG  @0 Laser materials @5 58 @6 Laser materials
C03 11  3  FRE  @0 Spectrométrie absorption @5 59 @6 Spectrométrie absorption
C03 11  3  ENG  @0 Absorption spectroscopy @5 59 @6 Absorption spectroscopy
C03 12  3  FRE  @0 Spectrométrie émission @5 60 @6 Spectrométrie émission
C03 12  3  ENG  @0 Emission spectroscopy @5 60 @6 Emission spectroscopy
C03 13  X  FRE  @0 Spectre excitation @5 61
C03 13  X  ENG  @0 Excitation spectrum @5 61
C03 13  X  SPA  @0 Espectro excitación @5 61
C03 14  3  FRE  @0 Propriété optique @5 62
C03 14  3  ENG  @0 Optical properties @5 62
C03 15  3  FRE  @0 Température ambiante @5 63
C03 15  3  ENG  @0 Ambient temperature @5 63
C03 16  X  FRE  @0 Codopage @5 65
C03 16  X  ENG  @0 Codoping @5 65
C03 16  X  SPA  @0 Codrogado @5 65
C03 17  3  FRE  @0 Addition erbium @5 66
C03 17  3  ENG  @0 Erbium additions @5 66
C03 18  3  FRE  @0 Addition thulium @5 67
C03 18  3  ENG  @0 Thulium additions @5 67
C03 19  X  FRE  @0 Transition optique @5 68
C03 19  X  ENG  @0 Optical transition @5 68
C03 19  X  SPA  @0 Transición óptica @5 68
C03 20  3  FRE  @0 Etude expérimentale @5 69
C03 20  3  ENG  @0 Experimental study @5 69
C03 21  3  FRE  @0 NaY(WO4)2 @4 INC @5 75
C03 22  3  FRE  @0 Na O W Y @4 INC @5 76
C03 23  3  FRE  @0 4270H @4 INC @5 91
C03 24  3  FRE  @0 7855H @2 PAC @4 INC @5 92
N21       @1 004
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 05-0006568 INIST
ET : The energy transfer processes between the Er3+ and Tm3+ in Er, Tm-codoped-NaY(WO4)2 crystal
AU : FENG SONG; JING SU; HAO TAN; LIN HAN; BO FU; JIANGUO TIAN; GUANGYIN ZHANG; ZHENXIANG CHENG; HUANCHU CHEN
AF : Photonics Center, College of Physics Sciences, Nankai University/Tianjin, 300071/Chine (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut., 7 aut.); Institute of Crystal, Shandong University/Jinan, Shandong Province/Chine (8 aut., 9 aut.)
DT : Publication en série; Niveau analytique
SO : Optics communications; ISSN 0030-4018; Coden OPCOB8; Pays-Bas; Da. 2004; Vol. 241; No. 4-6; Pp. 455-463; Bibl. 31 ref.
LA : Anglais
EA : Er3+,Tm3+-codoped NaY(WO4)2 crystal was prepared by using Czochralski (CZ) pulling method. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Such optical parameters as intensity parameters, spontaneous emission probabilities, branch ratios and lifetimes are calculated from absorption spectra with Judd-Ofelt theory. Transition processes of the energy levels of Er3+, Tm3+ are analyzed in details and the cross-relaxations: 1G4(Tm3+) + 4I15/2(Er3+) → 3F2(Tm3+) + 4I13/2(Er3+). 1G4(Tm3+) + 4I15/2(Er3+) → 3F4(Tm3+) + 4F9/2(Er3+) and 3H4(Tm3+) + 4I9/2(Er3+) → 3F4(Tm3+) + 4S3/2(Er3+) or 2H11/2 between the two ions are put forward. Through the experiments, we have found that, in this crystal, Tm3+ strengthens luminescence of Er3+ in the green and red regions evidently. The above energy transfer processes provide potential applications of Tm3+ in Er3+-doped laser materials.
CC : 001B40B70H; 001B70H55H
FD : Niveau énergie; Matériau optique; Erbium III; Thulium III; Matériau dopé; Potassium Yttrium Tungstate; Transfert énergie; Croissance cristalline; Méthode Czochralski; Matériau laser; Spectrométrie absorption; Spectrométrie émission; Spectre excitation; Propriété optique; Température ambiante; Codopage; Addition erbium; Addition thulium; Transition optique; Etude expérimentale; NaY(WO4)2; Na O W Y; 4270H; 7855H
ED : Energy levels; Optical materials; Erbium III; Thulium III; Doped materials; Potassium Yttrium Tungstates; Energy transfer; Crystal growth; Czochralski method; Laser materials; Absorption spectroscopy; Emission spectroscopy; Excitation spectrum; Optical properties; Ambient temperature; Codoping; Erbium additions; Thulium additions; Optical transition; Experimental study
SD : Erbio III; Tulio III; Espectro excitación; Codrogado; Transición óptica
LO : INIST-14750.354000120499390280
ID : 05-0006568

Links to Exploration step

Pascal:05-0006568

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The energy transfer processes between the Er
<sup>3+</sup>
and Tm
<sup>3+</sup>
in Er, Tm-codoped-NaY(WO
<sub>4</sub>
)
<sub>2</sub>
crystal</title>
<author>
<name sortKey="Feng Song" sort="Feng Song" uniqKey="Feng Song" last="Feng Song">FENG SONG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jing Su" sort="Jing Su" uniqKey="Jing Su" last="Jing Su">JING SU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hao Tan" sort="Hao Tan" uniqKey="Hao Tan" last="Hao Tan">HAO TAN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lin Han" sort="Lin Han" uniqKey="Lin Han" last="Lin Han">LIN HAN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bo Fu" sort="Bo Fu" uniqKey="Bo Fu" last="Bo Fu">BO FU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jianguo Tian" sort="Jianguo Tian" uniqKey="Jianguo Tian" last="Jianguo Tian">JIANGUO TIAN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guangyin Zhang" sort="Guangyin Zhang" uniqKey="Guangyin Zhang" last="Guangyin Zhang">GUANGYIN ZHANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhenxiang Cheng" sort="Zhenxiang Cheng" uniqKey="Zhenxiang Cheng" last="Zhenxiang Cheng">ZHENXIANG CHENG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Crystal, Shandong University</s1>
<s2>Jinan, Shandong Province</s2>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huanchu Chen" sort="Huanchu Chen" uniqKey="Huanchu Chen" last="Huanchu Chen">HUANCHU CHEN</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Crystal, Shandong University</s1>
<s2>Jinan, Shandong Province</s2>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0006568</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 05-0006568 INIST</idno>
<idno type="RBID">Pascal:05-0006568</idno>
<idno type="wicri:Area/Pascal/Corpus">000A06</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The energy transfer processes between the Er
<sup>3+</sup>
and Tm
<sup>3+</sup>
in Er, Tm-codoped-NaY(WO
<sub>4</sub>
)
<sub>2</sub>
crystal</title>
<author>
<name sortKey="Feng Song" sort="Feng Song" uniqKey="Feng Song" last="Feng Song">FENG SONG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jing Su" sort="Jing Su" uniqKey="Jing Su" last="Jing Su">JING SU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hao Tan" sort="Hao Tan" uniqKey="Hao Tan" last="Hao Tan">HAO TAN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lin Han" sort="Lin Han" uniqKey="Lin Han" last="Lin Han">LIN HAN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bo Fu" sort="Bo Fu" uniqKey="Bo Fu" last="Bo Fu">BO FU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jianguo Tian" sort="Jianguo Tian" uniqKey="Jianguo Tian" last="Jianguo Tian">JIANGUO TIAN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guangyin Zhang" sort="Guangyin Zhang" uniqKey="Guangyin Zhang" last="Guangyin Zhang">GUANGYIN ZHANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhenxiang Cheng" sort="Zhenxiang Cheng" uniqKey="Zhenxiang Cheng" last="Zhenxiang Cheng">ZHENXIANG CHENG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Crystal, Shandong University</s1>
<s2>Jinan, Shandong Province</s2>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huanchu Chen" sort="Huanchu Chen" uniqKey="Huanchu Chen" last="Huanchu Chen">HUANCHU CHEN</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Crystal, Shandong University</s1>
<s2>Jinan, Shandong Province</s2>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Optics communications</title>
<title level="j" type="abbreviated">Opt. commun.</title>
<idno type="ISSN">0030-4018</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Optics communications</title>
<title level="j" type="abbreviated">Opt. commun.</title>
<idno type="ISSN">0030-4018</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectroscopy</term>
<term>Ambient temperature</term>
<term>Codoping</term>
<term>Crystal growth</term>
<term>Czochralski method</term>
<term>Doped materials</term>
<term>Emission spectroscopy</term>
<term>Energy levels</term>
<term>Energy transfer</term>
<term>Erbium III</term>
<term>Erbium additions</term>
<term>Excitation spectrum</term>
<term>Experimental study</term>
<term>Laser materials</term>
<term>Optical materials</term>
<term>Optical properties</term>
<term>Optical transition</term>
<term>Potassium Yttrium Tungstates</term>
<term>Thulium III</term>
<term>Thulium additions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Niveau énergie</term>
<term>Matériau optique</term>
<term>Erbium III</term>
<term>Thulium III</term>
<term>Matériau dopé</term>
<term>Potassium Yttrium Tungstate</term>
<term>Transfert énergie</term>
<term>Croissance cristalline</term>
<term>Méthode Czochralski</term>
<term>Matériau laser</term>
<term>Spectrométrie absorption</term>
<term>Spectrométrie émission</term>
<term>Spectre excitation</term>
<term>Propriété optique</term>
<term>Température ambiante</term>
<term>Codopage</term>
<term>Addition erbium</term>
<term>Addition thulium</term>
<term>Transition optique</term>
<term>Etude expérimentale</term>
<term>NaY(WO4)2</term>
<term>Na O W Y</term>
<term>4270H</term>
<term>7855H</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Er
<sup>3+</sup>
,Tm
<sup>3+</sup>
-codoped NaY(WO
<sub>4</sub>
)
<sub>2</sub>
crystal was prepared by using Czochralski (CZ) pulling method. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Such optical parameters as intensity parameters, spontaneous emission probabilities, branch ratios and lifetimes are calculated from absorption spectra with Judd-Ofelt theory. Transition processes of the energy levels of Er
<sup>3+</sup>
, Tm
<sup>3+</sup>
are analyzed in details and the cross-relaxations:
<sup>1</sup>
G
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
I
<sub>15/2</sub>
(Er
<sup>3+</sup>
) →
<sup>3</sup>
F
<sub>2</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
I
<sub>13/2</sub>
(Er
<sup>3+</sup>
).
<sup>1</sup>
G
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
I
<sub>15/2</sub>
(Er
<sup>3+</sup>
) →
<sup>3</sup>
F
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
F
<sub>9/2</sub>
(Er
<sup>3+</sup>
) and
<sup>3</sup>
H
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
I
<sub>9/2</sub>
(Er
<sup>3+</sup>
) →
<sup>3</sup>
F
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
S
<sub>3/2</sub>
(Er
<sup>3+</sup>
) or
<sup>2</sup>
H
<sub>11/2</sub>
between the two ions are put forward. Through the experiments, we have found that, in this crystal, Tm
<sup>3+</sup>
strengthens luminescence of Er
<sup>3+</sup>
in the green and red regions evidently. The above energy transfer processes provide potential applications of Tm
<sup>3+</sup>
in Er
<sup>3+</sup>
-doped laser materials.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0030-4018</s0>
</fA01>
<fA02 i1="01">
<s0>OPCOB8</s0>
</fA02>
<fA03 i2="1">
<s0>Opt. commun.</s0>
</fA03>
<fA05>
<s2>241</s2>
</fA05>
<fA06>
<s2>4-6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The energy transfer processes between the Er
<sup>3+</sup>
and Tm
<sup>3+</sup>
in Er, Tm-codoped-NaY(WO
<sub>4</sub>
)
<sub>2</sub>
crystal</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FENG SONG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JING SU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HAO TAN</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LIN HAN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BO FU</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>JIANGUO TIAN</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>GUANGYIN ZHANG</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>ZHENXIANG CHENG</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>HUANCHU CHEN</s1>
</fA11>
<fA14 i1="01">
<s1>Photonics Center, College of Physics Sciences, Nankai University</s1>
<s2>Tianjin, 300071</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Crystal, Shandong University</s1>
<s2>Jinan, Shandong Province</s2>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>455-463</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14750</s2>
<s5>354000120499390280</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>31 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0006568</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Optics communications</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Er
<sup>3+</sup>
,Tm
<sup>3+</sup>
-codoped NaY(WO
<sub>4</sub>
)
<sub>2</sub>
crystal was prepared by using Czochralski (CZ) pulling method. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Such optical parameters as intensity parameters, spontaneous emission probabilities, branch ratios and lifetimes are calculated from absorption spectra with Judd-Ofelt theory. Transition processes of the energy levels of Er
<sup>3+</sup>
, Tm
<sup>3+</sup>
are analyzed in details and the cross-relaxations:
<sup>1</sup>
G
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
I
<sub>15/2</sub>
(Er
<sup>3+</sup>
) →
<sup>3</sup>
F
<sub>2</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
I
<sub>13/2</sub>
(Er
<sup>3+</sup>
).
<sup>1</sup>
G
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
I
<sub>15/2</sub>
(Er
<sup>3+</sup>
) →
<sup>3</sup>
F
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
F
<sub>9/2</sub>
(Er
<sup>3+</sup>
) and
<sup>3</sup>
H
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
I
<sub>9/2</sub>
(Er
<sup>3+</sup>
) →
<sup>3</sup>
F
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
S
<sub>3/2</sub>
(Er
<sup>3+</sup>
) or
<sup>2</sup>
H
<sub>11/2</sub>
between the two ions are put forward. Through the experiments, we have found that, in this crystal, Tm
<sup>3+</sup>
strengthens luminescence of Er
<sup>3+</sup>
in the green and red regions evidently. The above energy transfer processes provide potential applications of Tm
<sup>3+</sup>
in Er
<sup>3+</sup>
-doped laser materials.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B70H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H55H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Niveau énergie</s0>
<s5>45</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Energy levels</s0>
<s5>45</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Matériau optique</s0>
<s5>50</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Optical materials</s0>
<s5>50</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Erbium III</s0>
<s2>NC</s2>
<s5>51</s5>
<s6>Erbium «III»</s6>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Erbium III</s0>
<s2>NC</s2>
<s5>51</s5>
<s6>Erbium «III»</s6>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Erbio III</s0>
<s2>NC</s2>
<s5>51</s5>
<s6>Erbio «III»</s6>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Thulium III</s0>
<s2>NC</s2>
<s5>52</s5>
<s6>Thulium «III»</s6>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Thulium III</s0>
<s2>NC</s2>
<s5>52</s5>
<s6>Thulium «III»</s6>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Tulio III</s0>
<s2>NC</s2>
<s5>52</s5>
<s6>Tulio «III»</s6>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>53</s5>
<s6>Matériau dopé</s6>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>53</s5>
<s6>Doped materials</s6>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Potassium Yttrium Tungstate</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
<s6>Potassium Yttrium Tungstate</s6>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Potassium Yttrium Tungstates</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
<s6>Potassium Yttrium Tungstates</s6>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Transfert énergie</s0>
<s5>55</s5>
<s6>Transfert énergie</s6>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Energy transfer</s0>
<s5>55</s5>
<s6>Energy transfer</s6>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Croissance cristalline</s0>
<s5>56</s5>
<s6>Croissance cristalline</s6>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Crystal growth</s0>
<s5>56</s5>
<s6>Crystal growth</s6>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Méthode Czochralski</s0>
<s5>57</s5>
<s6>Méthode Czochralski</s6>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Czochralski method</s0>
<s5>57</s5>
<s6>Czochralski method</s6>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Matériau laser</s0>
<s5>58</s5>
<s6>Matériau laser</s6>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Laser materials</s0>
<s5>58</s5>
<s6>Laser materials</s6>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Spectrométrie absorption</s0>
<s5>59</s5>
<s6>Spectrométrie absorption</s6>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Absorption spectroscopy</s0>
<s5>59</s5>
<s6>Absorption spectroscopy</s6>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Spectrométrie émission</s0>
<s5>60</s5>
<s6>Spectrométrie émission</s6>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Emission spectroscopy</s0>
<s5>60</s5>
<s6>Emission spectroscopy</s6>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Spectre excitation</s0>
<s5>61</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Excitation spectrum</s0>
<s5>61</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Espectro excitación</s0>
<s5>61</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>62</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>62</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Température ambiante</s0>
<s5>63</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Ambient temperature</s0>
<s5>63</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Codopage</s0>
<s5>65</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Codoping</s0>
<s5>65</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Codrogado</s0>
<s5>65</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Addition erbium</s0>
<s5>66</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Erbium additions</s0>
<s5>66</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Addition thulium</s0>
<s5>67</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Thulium additions</s0>
<s5>67</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Transition optique</s0>
<s5>68</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Optical transition</s0>
<s5>68</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Transición óptica</s0>
<s5>68</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>69</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>69</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>NaY(WO4)2</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Na O W Y</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>4270H</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>7855H</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fN21>
<s1>004</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 05-0006568 INIST</NO>
<ET>The energy transfer processes between the Er
<sup>3+</sup>
and Tm
<sup>3+</sup>
in Er, Tm-codoped-NaY(WO
<sub>4</sub>
)
<sub>2</sub>
crystal</ET>
<AU>FENG SONG; JING SU; HAO TAN; LIN HAN; BO FU; JIANGUO TIAN; GUANGYIN ZHANG; ZHENXIANG CHENG; HUANCHU CHEN</AU>
<AF>Photonics Center, College of Physics Sciences, Nankai University/Tianjin, 300071/Chine (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut., 7 aut.); Institute of Crystal, Shandong University/Jinan, Shandong Province/Chine (8 aut., 9 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Optics communications; ISSN 0030-4018; Coden OPCOB8; Pays-Bas; Da. 2004; Vol. 241; No. 4-6; Pp. 455-463; Bibl. 31 ref.</SO>
<LA>Anglais</LA>
<EA>Er
<sup>3+</sup>
,Tm
<sup>3+</sup>
-codoped NaY(WO
<sub>4</sub>
)
<sub>2</sub>
crystal was prepared by using Czochralski (CZ) pulling method. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Such optical parameters as intensity parameters, spontaneous emission probabilities, branch ratios and lifetimes are calculated from absorption spectra with Judd-Ofelt theory. Transition processes of the energy levels of Er
<sup>3+</sup>
, Tm
<sup>3+</sup>
are analyzed in details and the cross-relaxations:
<sup>1</sup>
G
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
I
<sub>15/2</sub>
(Er
<sup>3+</sup>
) →
<sup>3</sup>
F
<sub>2</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
I
<sub>13/2</sub>
(Er
<sup>3+</sup>
).
<sup>1</sup>
G
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
I
<sub>15/2</sub>
(Er
<sup>3+</sup>
) →
<sup>3</sup>
F
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
F
<sub>9/2</sub>
(Er
<sup>3+</sup>
) and
<sup>3</sup>
H
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
I
<sub>9/2</sub>
(Er
<sup>3+</sup>
) →
<sup>3</sup>
F
<sub>4</sub>
(Tm
<sup>3+</sup>
) +
<sup>4</sup>
S
<sub>3/2</sub>
(Er
<sup>3+</sup>
) or
<sup>2</sup>
H
<sub>11/2</sub>
between the two ions are put forward. Through the experiments, we have found that, in this crystal, Tm
<sup>3+</sup>
strengthens luminescence of Er
<sup>3+</sup>
in the green and red regions evidently. The above energy transfer processes provide potential applications of Tm
<sup>3+</sup>
in Er
<sup>3+</sup>
-doped laser materials.</EA>
<CC>001B40B70H; 001B70H55H</CC>
<FD>Niveau énergie; Matériau optique; Erbium III; Thulium III; Matériau dopé; Potassium Yttrium Tungstate; Transfert énergie; Croissance cristalline; Méthode Czochralski; Matériau laser; Spectrométrie absorption; Spectrométrie émission; Spectre excitation; Propriété optique; Température ambiante; Codopage; Addition erbium; Addition thulium; Transition optique; Etude expérimentale; NaY(WO4)2; Na O W Y; 4270H; 7855H</FD>
<ED>Energy levels; Optical materials; Erbium III; Thulium III; Doped materials; Potassium Yttrium Tungstates; Energy transfer; Crystal growth; Czochralski method; Laser materials; Absorption spectroscopy; Emission spectroscopy; Excitation spectrum; Optical properties; Ambient temperature; Codoping; Erbium additions; Thulium additions; Optical transition; Experimental study</ED>
<SD>Erbio III; Tulio III; Espectro excitación; Codrogado; Transición óptica</SD>
<LO>INIST-14750.354000120499390280</LO>
<ID>05-0006568</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A06 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Corpus/biblio.hfd -nk 000A06 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:05-0006568
   |texte=   The energy transfer processes between the Er3+ and Tm3+ in Er, Tm-codoped-NaY(WO4)2 crystal
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024