Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Apparent molar heat capacities and apparent molar volumes of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa

Identifieur interne : 000991 ( Pascal/Corpus ); précédent : 000990; suivant : 000992

Apparent molar heat capacities and apparent molar volumes of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa

Auteurs : Andrew W. Hakin ; JIN LIAN LIU ; Kristy Erickson ; Julie-Vanessa Munoz

Source :

RBID : Pascal:05-0038128

Descripteurs français

English descriptors

Abstract

Acidified aqueous solutions of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa using a Sodev 02D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01 ≤ m/(mol.kg-1) ≤ 0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal Vϕ,2 and Cpϕ,2 values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p = 0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature. Apparent molar volumes and apparent heat capacities at infinite dilution for the trivalent metal cations Pr3+(aq), Gd3+(aq), Ho3+(aq), and Tm3+(aq) were calculated using the conventions V°2(H+(aq)≡0 and C°p2(H+(aq))≡0 and have been compared to other values reported in the literature.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0021-9614
A02 01      @0 JCTDAF
A03   1    @0 J. chem. thermodyn.
A05       @2 36
A06       @2 9
A08 01  1  ENG  @1 Apparent molar heat capacities and apparent molar volumes of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa
A11 01  1    @1 HAKIN (Andrew W.)
A11 02  1    @1 JIN LIAN LIU
A11 03  1    @1 ERICKSON (Kristy)
A11 04  1    @1 MUNOZ (Julie-Vanessa)
A14 01      @1 Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive @2 Lethbridge, Alta., T1K 3M4 @3 CAN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 773-786
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 14300 @5 354000116292690050
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 23 ref.
A47 01  1    @0 05-0038128
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of chemical thermodynamics
A66 01      @0 GBR
C01 01    ENG  @0 Acidified aqueous solutions of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa using a Sodev 02D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01 ≤ m/(mol.kg-1) ≤ 0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal Vϕ,2 and Cpϕ,2 values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p = 0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature. Apparent molar volumes and apparent heat capacities at infinite dilution for the trivalent metal cations Pr3+(aq), Gd3+(aq), Ho3+(aq), and Tm3+(aq) were calculated using the conventions V°2(H+(aq)≡0 and C°p2(H+(aq))≡0 and have been compared to other values reported in the literature.
C02 01  X    @0 001C01E02C
C03 01  X  FRE  @0 Grandeur apparente @5 01
C03 01  X  ENG  @0 Apparent quantity @5 01
C03 01  X  SPA  @0 Tamaño aparente @5 01
C03 02  X  FRE  @0 Capacité calorifique @5 02
C03 02  X  ENG  @0 Heat capacity @5 02
C03 02  X  SPA  @0 Capacidad calorífica @5 02
C03 03  X  FRE  @0 Volume molaire @5 03
C03 03  X  ENG  @0 Molar volume @5 03
C03 03  X  SPA  @0 Volumen molar @5 03
C03 04  X  FRE  @0 Densité @5 04
C03 04  X  ENG  @0 Density @5 04
C03 04  X  SPA  @0 Densidad @5 04
C03 05  X  FRE  @0 Lanthanide Composé @2 NC @2 NA @5 05
C03 05  X  ENG  @0 Lanthanide Compounds @2 NC @2 NA @5 05
C03 05  X  SPA  @0 Lantánido Compuesto @2 NC @2 NA @5 05
C03 06  X  FRE  @0 Solution aqueuse @5 06
C03 06  X  ENG  @0 Aqueous solution @5 06
C03 06  X  SPA  @0 Solución acuosa @5 06
C03 07  X  FRE  @0 Propriété thermique @5 07
C03 07  X  ENG  @0 Thermal properties @5 07
C03 07  X  SPA  @0 Propiedad térmica @5 07
C03 08  X  FRE  @0 Propriété thermodynamique @5 08
C03 08  X  ENG  @0 Thermodynamic properties @5 08
C03 08  X  SPA  @0 Propiedad termodinámica @5 08
C03 09  X  FRE  @0 Propriété physique @5 09
C03 09  X  ENG  @0 Physical properties @5 09
C03 09  X  SPA  @0 Propiedad física @5 09
C03 10  X  FRE  @0 Chaleur massique @5 10
C03 10  X  ENG  @0 Specific heat @5 10
C03 10  X  SPA  @0 Calor específico @5 10
C03 11  3  FRE  @0 Praséodyme perchlorate @2 NK @5 11
C03 11  3  ENG  @0 Praseodymium perchlorates @2 NK @5 11
C03 12  3  FRE  @0 Gadolinium perchlorate @2 NK @5 12
C03 12  3  ENG  @0 Gadolinium perchlorates @2 NK @5 12
C03 13  3  FRE  @0 Holmium perchlorate @2 NK @5 13
C03 13  3  ENG  @0 Holmium perchlorates @2 NK @5 13
C03 14  3  FRE  @0 Thulium perchlorate @2 NK @5 14
C03 14  3  ENG  @0 Thulium perchlorates @2 NK @5 14
N21       @1 017
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 05-0038128 INIST
ET : Apparent molar heat capacities and apparent molar volumes of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa
AU : HAKIN (Andrew W.); JIN LIAN LIU; ERICKSON (Kristy); MUNOZ (Julie-Vanessa)
AF : Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive/Lethbridge, Alta., T1K 3M4/Canada (1 aut., 2 aut., 3 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of chemical thermodynamics; ISSN 0021-9614; Coden JCTDAF; Royaume-Uni; Da. 2004; Vol. 36; No. 9; Pp. 773-786; Bibl. 23 ref.
LA : Anglais
EA : Acidified aqueous solutions of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa using a Sodev 02D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01 ≤ m/(mol.kg-1) ≤ 0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal Vϕ,2 and Cpϕ,2 values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p = 0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature. Apparent molar volumes and apparent heat capacities at infinite dilution for the trivalent metal cations Pr3+(aq), Gd3+(aq), Ho3+(aq), and Tm3+(aq) were calculated using the conventions V°2(H+(aq)≡0 and C°p2(H+(aq))≡0 and have been compared to other values reported in the literature.
CC : 001C01E02C
FD : Grandeur apparente; Capacité calorifique; Volume molaire; Densité; Lanthanide Composé; Solution aqueuse; Propriété thermique; Propriété thermodynamique; Propriété physique; Chaleur massique; Praséodyme perchlorate; Gadolinium perchlorate; Holmium perchlorate; Thulium perchlorate
ED : Apparent quantity; Heat capacity; Molar volume; Density; Lanthanide Compounds; Aqueous solution; Thermal properties; Thermodynamic properties; Physical properties; Specific heat; Praseodymium perchlorates; Gadolinium perchlorates; Holmium perchlorates; Thulium perchlorates
SD : Tamaño aparente; Capacidad calorífica; Volumen molar; Densidad; Lantánido Compuesto; Solución acuosa; Propiedad térmica; Propiedad termodinámica; Propiedad física; Calor específico
LO : INIST-14300.354000116292690050
ID : 05-0038128

Links to Exploration step

Pascal:05-0038128

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Apparent molar heat capacities and apparent molar volumes of Pr(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Gd(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Ho(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), and Tm(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa</title>
<author>
<name sortKey="Hakin, Andrew W" sort="Hakin, Andrew W" uniqKey="Hakin A" first="Andrew W." last="Hakin">Andrew W. Hakin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive</s1>
<s2>Lethbridge, Alta., T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jin Lian Liu" sort="Jin Lian Liu" uniqKey="Jin Lian Liu" last="Jin Lian Liu">JIN LIAN LIU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive</s1>
<s2>Lethbridge, Alta., T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Erickson, Kristy" sort="Erickson, Kristy" uniqKey="Erickson K" first="Kristy" last="Erickson">Kristy Erickson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive</s1>
<s2>Lethbridge, Alta., T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Munoz, Julie Vanessa" sort="Munoz, Julie Vanessa" uniqKey="Munoz J" first="Julie-Vanessa" last="Munoz">Julie-Vanessa Munoz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive</s1>
<s2>Lethbridge, Alta., T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0038128</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 05-0038128 INIST</idno>
<idno type="RBID">Pascal:05-0038128</idno>
<idno type="wicri:Area/Pascal/Corpus">000991</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Apparent molar heat capacities and apparent molar volumes of Pr(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Gd(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Ho(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), and Tm(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa</title>
<author>
<name sortKey="Hakin, Andrew W" sort="Hakin, Andrew W" uniqKey="Hakin A" first="Andrew W." last="Hakin">Andrew W. Hakin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive</s1>
<s2>Lethbridge, Alta., T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jin Lian Liu" sort="Jin Lian Liu" uniqKey="Jin Lian Liu" last="Jin Lian Liu">JIN LIAN LIU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive</s1>
<s2>Lethbridge, Alta., T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Erickson, Kristy" sort="Erickson, Kristy" uniqKey="Erickson K" first="Kristy" last="Erickson">Kristy Erickson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive</s1>
<s2>Lethbridge, Alta., T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Munoz, Julie Vanessa" sort="Munoz, Julie Vanessa" uniqKey="Munoz J" first="Julie-Vanessa" last="Munoz">Julie-Vanessa Munoz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive</s1>
<s2>Lethbridge, Alta., T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of chemical thermodynamics</title>
<title level="j" type="abbreviated">J. chem. thermodyn.</title>
<idno type="ISSN">0021-9614</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of chemical thermodynamics</title>
<title level="j" type="abbreviated">J. chem. thermodyn.</title>
<idno type="ISSN">0021-9614</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Apparent quantity</term>
<term>Aqueous solution</term>
<term>Density</term>
<term>Gadolinium perchlorates</term>
<term>Heat capacity</term>
<term>Holmium perchlorates</term>
<term>Lanthanide Compounds</term>
<term>Molar volume</term>
<term>Physical properties</term>
<term>Praseodymium perchlorates</term>
<term>Specific heat</term>
<term>Thermal properties</term>
<term>Thermodynamic properties</term>
<term>Thulium perchlorates</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Grandeur apparente</term>
<term>Capacité calorifique</term>
<term>Volume molaire</term>
<term>Densité</term>
<term>Lanthanide Composé</term>
<term>Solution aqueuse</term>
<term>Propriété thermique</term>
<term>Propriété thermodynamique</term>
<term>Propriété physique</term>
<term>Chaleur massique</term>
<term>Praséodyme perchlorate</term>
<term>Gadolinium perchlorate</term>
<term>Holmium perchlorate</term>
<term>Thulium perchlorate</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Acidified aqueous solutions of Pr(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Gd(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Ho(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), and Tm(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa using a Sodev 02D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01 ≤ m/(mol.kg
<sup>-1</sup>
) ≤ 0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal V
<sub>ϕ,2</sub>
and C
<sub>pϕ,2</sub>
values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p = 0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature. Apparent molar volumes and apparent heat capacities at infinite dilution for the trivalent metal cations Pr
<sup>3+</sup>
(aq), Gd
<sup>3+</sup>
(aq), Ho
<sup>3+</sup>
(aq), and Tm
<sup>3+</sup>
(aq) were calculated using the conventions V°
<sub>2</sub>
(H
<sup>+</sup>
(aq)≡0 and C°
<sub>p2</sub>
(H
<sup>+</sup>
(aq))≡0 and have been compared to other values reported in the literature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-9614</s0>
</fA01>
<fA02 i1="01">
<s0>JCTDAF</s0>
</fA02>
<fA03 i2="1">
<s0>J. chem. thermodyn.</s0>
</fA03>
<fA05>
<s2>36</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Apparent molar heat capacities and apparent molar volumes of Pr(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Gd(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Ho(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), and Tm(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HAKIN (Andrew W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JIN LIAN LIU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ERICKSON (Kristy)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MUNOZ (Julie-Vanessa)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive</s1>
<s2>Lethbridge, Alta., T1K 3M4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>773-786</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14300</s2>
<s5>354000116292690050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0038128</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of chemical thermodynamics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Acidified aqueous solutions of Pr(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Gd(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Ho(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), and Tm(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa using a Sodev 02D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01 ≤ m/(mol.kg
<sup>-1</sup>
) ≤ 0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal V
<sub>ϕ,2</sub>
and C
<sub>pϕ,2</sub>
values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p = 0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature. Apparent molar volumes and apparent heat capacities at infinite dilution for the trivalent metal cations Pr
<sup>3+</sup>
(aq), Gd
<sup>3+</sup>
(aq), Ho
<sup>3+</sup>
(aq), and Tm
<sup>3+</sup>
(aq) were calculated using the conventions V°
<sub>2</sub>
(H
<sup>+</sup>
(aq)≡0 and C°
<sub>p2</sub>
(H
<sup>+</sup>
(aq))≡0 and have been compared to other values reported in the literature.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01E02C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Grandeur apparente</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Apparent quantity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Tamaño aparente</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Capacité calorifique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Heat capacity</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Capacidad calorífica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Volume molaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Molar volume</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Volumen molar</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Densité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Density</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Densidad</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Lanthanide Composé</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Lanthanide Compounds</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Lantánido Compuesto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Solution aqueuse</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Aqueous solution</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Solución acuosa</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Propriété thermique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Thermal properties</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Propiedad térmica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Propriété thermodynamique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Thermodynamic properties</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Propiedad termodinámica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Propriété physique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Physical properties</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Propiedad física</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Chaleur massique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Specific heat</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Calor específico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Praséodyme perchlorate</s0>
<s2>NK</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Praseodymium perchlorates</s0>
<s2>NK</s2>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Gadolinium perchlorate</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gadolinium perchlorates</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Holmium perchlorate</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Holmium perchlorates</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Thulium perchlorate</s0>
<s2>NK</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Thulium perchlorates</s0>
<s2>NK</s2>
<s5>14</s5>
</fC03>
<fN21>
<s1>017</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 05-0038128 INIST</NO>
<ET>Apparent molar heat capacities and apparent molar volumes of Pr(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Gd(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Ho(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), and Tm(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa</ET>
<AU>HAKIN (Andrew W.); JIN LIAN LIU; ERICKSON (Kristy); MUNOZ (Julie-Vanessa)</AU>
<AF>Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive/Lethbridge, Alta., T1K 3M4/Canada (1 aut., 2 aut., 3 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of chemical thermodynamics; ISSN 0021-9614; Coden JCTDAF; Royaume-Uni; Da. 2004; Vol. 36; No. 9; Pp. 773-786; Bibl. 23 ref.</SO>
<LA>Anglais</LA>
<EA>Acidified aqueous solutions of Pr(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Gd(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), Ho(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq), and Tm(ClO
<sub>4</sub>
)
<sub>3</sub>
(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa using a Sodev 02D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01 ≤ m/(mol.kg
<sup>-1</sup>
) ≤ 0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal V
<sub>ϕ,2</sub>
and C
<sub>pϕ,2</sub>
values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p = 0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature. Apparent molar volumes and apparent heat capacities at infinite dilution for the trivalent metal cations Pr
<sup>3+</sup>
(aq), Gd
<sup>3+</sup>
(aq), Ho
<sup>3+</sup>
(aq), and Tm
<sup>3+</sup>
(aq) were calculated using the conventions V°
<sub>2</sub>
(H
<sup>+</sup>
(aq)≡0 and C°
<sub>p2</sub>
(H
<sup>+</sup>
(aq))≡0 and have been compared to other values reported in the literature.</EA>
<CC>001C01E02C</CC>
<FD>Grandeur apparente; Capacité calorifique; Volume molaire; Densité; Lanthanide Composé; Solution aqueuse; Propriété thermique; Propriété thermodynamique; Propriété physique; Chaleur massique; Praséodyme perchlorate; Gadolinium perchlorate; Holmium perchlorate; Thulium perchlorate</FD>
<ED>Apparent quantity; Heat capacity; Molar volume; Density; Lanthanide Compounds; Aqueous solution; Thermal properties; Thermodynamic properties; Physical properties; Specific heat; Praseodymium perchlorates; Gadolinium perchlorates; Holmium perchlorates; Thulium perchlorates</ED>
<SD>Tamaño aparente; Capacidad calorífica; Volumen molar; Densidad; Lantánido Compuesto; Solución acuosa; Propiedad térmica; Propiedad termodinámica; Propiedad física; Calor específico</SD>
<LO>INIST-14300.354000116292690050</LO>
<ID>05-0038128</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000991 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Corpus/biblio.hfd -nk 000991 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:05-0038128
   |texte=   Apparent molar heat capacities and apparent molar volumes of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024