Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes

Identifieur interne : 000917 ( Main/Exploration ); précédent : 000916; suivant : 000918

Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes

Auteurs : Susanna Neuhold [États-Unis] ; David J. Schroeder [États-Unis] ; John T. Vaughey [États-Unis]

Source :

RBID : Pascal:12-0170302

Descripteurs français

English descriptors

Abstract

As new applications for lithium-ion batteries emerge into the marketplace, a new emphasis is being placed on developing higher capacity electrodes. Two of the higher capacity technologies under development are lithium-sulfur and lithium-air batteries, both of which, in most configurations, use a lithium metal anode. Building on our previous work extending the cycle life of lithium metal anodes via surface functionalization with silane groups, we have identified two separate regimes for the cycle life enhancements based on size of the silane R-groups. Very small R-groups (TMS) and R-groups bulkier than triphenyl show enhanced cycle life compared to control samples while R-groups between these in size show reduced cycle life. Additionally, we present a comparison between different cleaning methods to optimize the hydroxyl functionalized layer on the lithium metal and the influence of these methods on the stability of lithium metal in EC:EMC electrolyte. A solvent based cleaning approach is shown to substantially improve stability when combined with chlorotrimethyl silane treatment.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes</title>
<author>
<name sortKey="Neuhold, Susanna" sort="Neuhold, Susanna" uniqKey="Neuhold S" first="Susanna" last="Neuhold">Susanna Neuhold</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chemical Sciences and Engineering Division Argonne National Laboratory</s1>
<s2>Argonne, IL 60439</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Chemical Sciences and Engineering Division Argonne National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schroeder, David J" sort="Schroeder, David J" uniqKey="Schroeder D" first="David J." last="Schroeder">David J. Schroeder</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Engineering Technology Northern Illinois University</s1>
<s2>DeKalb, IL 60115</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Department of Engineering Technology Northern Illinois University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vaughey, John T" sort="Vaughey, John T" uniqKey="Vaughey J" first="John T." last="Vaughey">John T. Vaughey</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chemical Sciences and Engineering Division Argonne National Laboratory</s1>
<s2>Argonne, IL 60439</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Chemical Sciences and Engineering Division Argonne National Laboratory</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0170302</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0170302 INIST</idno>
<idno type="RBID">Pascal:12-0170302</idno>
<idno type="wicri:Area/Pascal/Corpus">000162</idno>
<idno type="wicri:Area/Pascal/Curation">000162</idno>
<idno type="wicri:Area/Pascal/Checkpoint">000161</idno>
<idno type="wicri:explorRef" wicri:stream="Pascal" wicri:step="Checkpoint">000161</idno>
<idno type="wicri:doubleKey">0378-7753:2012:Neuhold S:effect:of:surface</idno>
<idno type="wicri:Area/Main/Merge">000919</idno>
<idno type="wicri:Area/Main/Curation">000917</idno>
<idno type="wicri:Area/Main/Exploration">000917</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes</title>
<author>
<name sortKey="Neuhold, Susanna" sort="Neuhold, Susanna" uniqKey="Neuhold S" first="Susanna" last="Neuhold">Susanna Neuhold</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chemical Sciences and Engineering Division Argonne National Laboratory</s1>
<s2>Argonne, IL 60439</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Chemical Sciences and Engineering Division Argonne National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schroeder, David J" sort="Schroeder, David J" uniqKey="Schroeder D" first="David J." last="Schroeder">David J. Schroeder</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Engineering Technology Northern Illinois University</s1>
<s2>DeKalb, IL 60115</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Department of Engineering Technology Northern Illinois University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vaughey, John T" sort="Vaughey, John T" uniqKey="Vaughey J" first="John T." last="Vaughey">John T. Vaughey</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chemical Sciences and Engineering Division Argonne National Laboratory</s1>
<s2>Argonne, IL 60439</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Chemical Sciences and Engineering Division Argonne National Laboratory</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of power sources</title>
<title level="j" type="abbreviated">J. power sources</title>
<idno type="ISSN">0378-7753</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of power sources</title>
<title level="j" type="abbreviated">J. power sources</title>
<idno type="ISSN">0378-7753</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anode</term>
<term>Coatings</term>
<term>Comparative study</term>
<term>Electrolyte</term>
<term>Electromagnetic compatibility</term>
<term>Lithium</term>
<term>Lithium battery</term>
<term>Lithium-air battery</term>
<term>Secondary cell</term>
<term>Sulfur</term>
<term>Surface preparation</term>
<term>Thulium sulfides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Préparation surface</term>
<term>Anode</term>
<term>Batterie lithium</term>
<term>Etude comparative</term>
<term>Compatibilité électromagnétique</term>
<term>Electrolyte</term>
<term>Accumulateur électrochimique</term>
<term>Revêtement</term>
<term>Lithium</term>
<term>Soufre</term>
<term>Sulfure de thulium</term>
<term>TmS</term>
<term>Batterie lithium-air</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Soufre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As new applications for lithium-ion batteries emerge into the marketplace, a new emphasis is being placed on developing higher capacity electrodes. Two of the higher capacity technologies under development are lithium-sulfur and lithium-air batteries, both of which, in most configurations, use a lithium metal anode. Building on our previous work extending the cycle life of lithium metal anodes via surface functionalization with silane groups, we have identified two separate regimes for the cycle life enhancements based on size of the silane R-groups. Very small R-groups (TMS) and R-groups bulkier than triphenyl show enhanced cycle life compared to control samples while R-groups between these in size show reduced cycle life. Additionally, we present a comparison between different cleaning methods to optimize the hydroxyl functionalized layer on the lithium metal and the influence of these methods on the stability of lithium metal in EC:EMC electrolyte. A solvent based cleaning approach is shown to substantially improve stability when combined with chlorotrimethyl silane treatment.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Neuhold, Susanna" sort="Neuhold, Susanna" uniqKey="Neuhold S" first="Susanna" last="Neuhold">Susanna Neuhold</name>
</noRegion>
<name sortKey="Schroeder, David J" sort="Schroeder, David J" uniqKey="Schroeder D" first="David J." last="Schroeder">David J. Schroeder</name>
<name sortKey="Vaughey, John T" sort="Vaughey, John T" uniqKey="Vaughey J" first="John T." last="Vaughey">John T. Vaughey</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000917 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000917 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:12-0170302
   |texte=   Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024