Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes

Identifieur interne : 000162 ( Pascal/Corpus ); précédent : 000161; suivant : 000163

Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes

Auteurs : Susanna Neuhold ; David J. Schroeder ; John T. Vaughey

Source :

RBID : Pascal:12-0170302

Descripteurs français

English descriptors

Abstract

As new applications for lithium-ion batteries emerge into the marketplace, a new emphasis is being placed on developing higher capacity electrodes. Two of the higher capacity technologies under development are lithium-sulfur and lithium-air batteries, both of which, in most configurations, use a lithium metal anode. Building on our previous work extending the cycle life of lithium metal anodes via surface functionalization with silane groups, we have identified two separate regimes for the cycle life enhancements based on size of the silane R-groups. Very small R-groups (TMS) and R-groups bulkier than triphenyl show enhanced cycle life compared to control samples while R-groups between these in size show reduced cycle life. Additionally, we present a comparison between different cleaning methods to optimize the hydroxyl functionalized layer on the lithium metal and the influence of these methods on the stability of lithium metal in EC:EMC electrolyte. A solvent based cleaning approach is shown to substantially improve stability when combined with chlorotrimethyl silane treatment.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0378-7753
A02 01      @0 JPSODZ
A03   1    @0 J. power sources
A05       @2 206
A08 01  1  ENG  @1 Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes
A11 01  1    @1 NEUHOLD (Susanna)
A11 02  1    @1 SCHROEDER (David J.)
A11 03  1    @1 VAUGHEY (John T.)
A14 01      @1 Chemical Sciences and Engineering Division Argonne National Laboratory @2 Argonne, IL 60439 @3 USA @Z 1 aut. @Z 3 aut.
A14 02      @1 Department of Engineering Technology Northern Illinois University @2 DeKalb, IL 60115 @3 USA @Z 2 aut.
A20       @1 295-300
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 17113 @5 354000509777690390
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 23 ref.
A47 01  1    @0 12-0170302
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of power sources
A66 01      @0 NLD
C01 01    ENG  @0 As new applications for lithium-ion batteries emerge into the marketplace, a new emphasis is being placed on developing higher capacity electrodes. Two of the higher capacity technologies under development are lithium-sulfur and lithium-air batteries, both of which, in most configurations, use a lithium metal anode. Building on our previous work extending the cycle life of lithium metal anodes via surface functionalization with silane groups, we have identified two separate regimes for the cycle life enhancements based on size of the silane R-groups. Very small R-groups (TMS) and R-groups bulkier than triphenyl show enhanced cycle life compared to control samples while R-groups between these in size show reduced cycle life. Additionally, we present a comparison between different cleaning methods to optimize the hydroxyl functionalized layer on the lithium metal and the influence of these methods on the stability of lithium metal in EC:EMC electrolyte. A solvent based cleaning approach is shown to substantially improve stability when combined with chlorotrimethyl silane treatment.
C02 01  X    @0 001D05I03E
C03 01  X  FRE  @0 Préparation surface @5 01
C03 01  X  ENG  @0 Surface preparation @5 01
C03 01  X  SPA  @0 Preparación superficie @5 01
C03 02  X  FRE  @0 Anode @5 02
C03 02  X  ENG  @0 Anode @5 02
C03 02  X  SPA  @0 Anodo @5 02
C03 03  3  FRE  @0 Batterie lithium @5 03
C03 03  3  ENG  @0 Lithium battery @5 03
C03 04  X  FRE  @0 Etude comparative @5 04
C03 04  X  ENG  @0 Comparative study @5 04
C03 04  X  SPA  @0 Estudio comparativo @5 04
C03 05  X  FRE  @0 Compatibilité électromagnétique @5 05
C03 05  X  ENG  @0 Electromagnetic compatibility @5 05
C03 05  X  SPA  @0 Compatibilidad electromagnética @5 05
C03 06  X  FRE  @0 Electrolyte @5 06
C03 06  X  ENG  @0 Electrolyte @5 06
C03 06  X  SPA  @0 Electrólito @5 06
C03 07  X  FRE  @0 Accumulateur électrochimique @5 07
C03 07  X  ENG  @0 Secondary cell @5 07
C03 07  X  SPA  @0 Acumulador electroquímico @5 07
C03 08  X  FRE  @0 Revêtement @5 08
C03 08  X  ENG  @0 Coatings @5 08
C03 08  X  SPA  @0 Revestimiento @5 08
C03 09  X  FRE  @0 Lithium @2 NC @5 22
C03 09  X  ENG  @0 Lithium @2 NC @5 22
C03 09  X  SPA  @0 Litio @2 NC @5 22
C03 10  X  FRE  @0 Soufre @2 NC @2 FX @5 23
C03 10  X  ENG  @0 Sulfur @2 NC @2 FX @5 23
C03 10  X  SPA  @0 Azufre @2 NC @2 FX @5 23
C03 11  3  FRE  @0 Sulfure de thulium @2 NK @5 24
C03 11  3  ENG  @0 Thulium sulfides @2 NK @5 24
C03 12  X  FRE  @0 TmS @4 INC @5 82
C03 13  X  FRE  @0 Batterie lithium-air @4 CD @5 96
C03 13  X  ENG  @0 Lithium-air battery @4 CD @5 96
C07 01  X  FRE  @0 Accumulateur alcalin @5 09
C07 01  X  ENG  @0 Alkaline storage battery @5 09
C07 01  X  SPA  @0 Acumulador alcalino @5 09
N21       @1 129
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0170302 INIST
ET : Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes
AU : NEUHOLD (Susanna); SCHROEDER (David J.); VAUGHEY (John T.)
AF : Chemical Sciences and Engineering Division Argonne National Laboratory/Argonne, IL 60439/Etats-Unis (1 aut., 3 aut.); Department of Engineering Technology Northern Illinois University/DeKalb, IL 60115/Etats-Unis (2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of power sources; ISSN 0378-7753; Coden JPSODZ; Pays-Bas; Da. 2012; Vol. 206; Pp. 295-300; Bibl. 23 ref.
LA : Anglais
EA : As new applications for lithium-ion batteries emerge into the marketplace, a new emphasis is being placed on developing higher capacity electrodes. Two of the higher capacity technologies under development are lithium-sulfur and lithium-air batteries, both of which, in most configurations, use a lithium metal anode. Building on our previous work extending the cycle life of lithium metal anodes via surface functionalization with silane groups, we have identified two separate regimes for the cycle life enhancements based on size of the silane R-groups. Very small R-groups (TMS) and R-groups bulkier than triphenyl show enhanced cycle life compared to control samples while R-groups between these in size show reduced cycle life. Additionally, we present a comparison between different cleaning methods to optimize the hydroxyl functionalized layer on the lithium metal and the influence of these methods on the stability of lithium metal in EC:EMC electrolyte. A solvent based cleaning approach is shown to substantially improve stability when combined with chlorotrimethyl silane treatment.
CC : 001D05I03E
FD : Préparation surface; Anode; Batterie lithium; Etude comparative; Compatibilité électromagnétique; Electrolyte; Accumulateur électrochimique; Revêtement; Lithium; Soufre; Sulfure de thulium; TmS; Batterie lithium-air
FG : Accumulateur alcalin
ED : Surface preparation; Anode; Lithium battery; Comparative study; Electromagnetic compatibility; Electrolyte; Secondary cell; Coatings; Lithium; Sulfur; Thulium sulfides; Lithium-air battery
EG : Alkaline storage battery
SD : Preparación superficie; Anodo; Estudio comparativo; Compatibilidad electromagnética; Electrólito; Acumulador electroquímico; Revestimiento; Litio; Azufre
LO : INIST-17113.354000509777690390
ID : 12-0170302

Links to Exploration step

Pascal:12-0170302

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes</title>
<author>
<name sortKey="Neuhold, Susanna" sort="Neuhold, Susanna" uniqKey="Neuhold S" first="Susanna" last="Neuhold">Susanna Neuhold</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Chemical Sciences and Engineering Division Argonne National Laboratory</s1>
<s2>Argonne, IL 60439</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schroeder, David J" sort="Schroeder, David J" uniqKey="Schroeder D" first="David J." last="Schroeder">David J. Schroeder</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Engineering Technology Northern Illinois University</s1>
<s2>DeKalb, IL 60115</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vaughey, John T" sort="Vaughey, John T" uniqKey="Vaughey J" first="John T." last="Vaughey">John T. Vaughey</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Chemical Sciences and Engineering Division Argonne National Laboratory</s1>
<s2>Argonne, IL 60439</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0170302</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0170302 INIST</idno>
<idno type="RBID">Pascal:12-0170302</idno>
<idno type="wicri:Area/Pascal/Corpus">000162</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes</title>
<author>
<name sortKey="Neuhold, Susanna" sort="Neuhold, Susanna" uniqKey="Neuhold S" first="Susanna" last="Neuhold">Susanna Neuhold</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Chemical Sciences and Engineering Division Argonne National Laboratory</s1>
<s2>Argonne, IL 60439</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schroeder, David J" sort="Schroeder, David J" uniqKey="Schroeder D" first="David J." last="Schroeder">David J. Schroeder</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Engineering Technology Northern Illinois University</s1>
<s2>DeKalb, IL 60115</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vaughey, John T" sort="Vaughey, John T" uniqKey="Vaughey J" first="John T." last="Vaughey">John T. Vaughey</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Chemical Sciences and Engineering Division Argonne National Laboratory</s1>
<s2>Argonne, IL 60439</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of power sources</title>
<title level="j" type="abbreviated">J. power sources</title>
<idno type="ISSN">0378-7753</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of power sources</title>
<title level="j" type="abbreviated">J. power sources</title>
<idno type="ISSN">0378-7753</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anode</term>
<term>Coatings</term>
<term>Comparative study</term>
<term>Electrolyte</term>
<term>Electromagnetic compatibility</term>
<term>Lithium</term>
<term>Lithium battery</term>
<term>Lithium-air battery</term>
<term>Secondary cell</term>
<term>Sulfur</term>
<term>Surface preparation</term>
<term>Thulium sulfides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Préparation surface</term>
<term>Anode</term>
<term>Batterie lithium</term>
<term>Etude comparative</term>
<term>Compatibilité électromagnétique</term>
<term>Electrolyte</term>
<term>Accumulateur électrochimique</term>
<term>Revêtement</term>
<term>Lithium</term>
<term>Soufre</term>
<term>Sulfure de thulium</term>
<term>TmS</term>
<term>Batterie lithium-air</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As new applications for lithium-ion batteries emerge into the marketplace, a new emphasis is being placed on developing higher capacity electrodes. Two of the higher capacity technologies under development are lithium-sulfur and lithium-air batteries, both of which, in most configurations, use a lithium metal anode. Building on our previous work extending the cycle life of lithium metal anodes via surface functionalization with silane groups, we have identified two separate regimes for the cycle life enhancements based on size of the silane R-groups. Very small R-groups (TMS) and R-groups bulkier than triphenyl show enhanced cycle life compared to control samples while R-groups between these in size show reduced cycle life. Additionally, we present a comparison between different cleaning methods to optimize the hydroxyl functionalized layer on the lithium metal and the influence of these methods on the stability of lithium metal in EC:EMC electrolyte. A solvent based cleaning approach is shown to substantially improve stability when combined with chlorotrimethyl silane treatment.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0378-7753</s0>
</fA01>
<fA02 i1="01">
<s0>JPSODZ</s0>
</fA02>
<fA03 i2="1">
<s0>J. power sources</s0>
</fA03>
<fA05>
<s2>206</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NEUHOLD (Susanna)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHROEDER (David J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VAUGHEY (John T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Chemical Sciences and Engineering Division Argonne National Laboratory</s1>
<s2>Argonne, IL 60439</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Engineering Technology Northern Illinois University</s1>
<s2>DeKalb, IL 60115</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>295-300</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17113</s2>
<s5>354000509777690390</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0170302</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of power sources</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>As new applications for lithium-ion batteries emerge into the marketplace, a new emphasis is being placed on developing higher capacity electrodes. Two of the higher capacity technologies under development are lithium-sulfur and lithium-air batteries, both of which, in most configurations, use a lithium metal anode. Building on our previous work extending the cycle life of lithium metal anodes via surface functionalization with silane groups, we have identified two separate regimes for the cycle life enhancements based on size of the silane R-groups. Very small R-groups (TMS) and R-groups bulkier than triphenyl show enhanced cycle life compared to control samples while R-groups between these in size show reduced cycle life. Additionally, we present a comparison between different cleaning methods to optimize the hydroxyl functionalized layer on the lithium metal and the influence of these methods on the stability of lithium metal in EC:EMC electrolyte. A solvent based cleaning approach is shown to substantially improve stability when combined with chlorotrimethyl silane treatment.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D05I03E</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Préparation surface</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Surface preparation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Preparación superficie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Anode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Anode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Batterie lithium</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Lithium battery</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Compatibilité électromagnétique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Electromagnetic compatibility</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Compatibilidad electromagnética</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Electrolyte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Electrolyte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Electrólito</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Accumulateur électrochimique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Secondary cell</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Acumulador electroquímico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Revêtement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Coatings</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Revestimiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Lithium</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Lithium</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Litio</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Soufre</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Sulfur</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Azufre</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Sulfure de thulium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Thulium sulfides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>TmS</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Batterie lithium-air</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Lithium-air battery</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Accumulateur alcalin</s0>
<s5>09</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Alkaline storage battery</s0>
<s5>09</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Acumulador alcalino</s0>
<s5>09</s5>
</fC07>
<fN21>
<s1>129</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0170302 INIST</NO>
<ET>Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes</ET>
<AU>NEUHOLD (Susanna); SCHROEDER (David J.); VAUGHEY (John T.)</AU>
<AF>Chemical Sciences and Engineering Division Argonne National Laboratory/Argonne, IL 60439/Etats-Unis (1 aut., 3 aut.); Department of Engineering Technology Northern Illinois University/DeKalb, IL 60115/Etats-Unis (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of power sources; ISSN 0378-7753; Coden JPSODZ; Pays-Bas; Da. 2012; Vol. 206; Pp. 295-300; Bibl. 23 ref.</SO>
<LA>Anglais</LA>
<EA>As new applications for lithium-ion batteries emerge into the marketplace, a new emphasis is being placed on developing higher capacity electrodes. Two of the higher capacity technologies under development are lithium-sulfur and lithium-air batteries, both of which, in most configurations, use a lithium metal anode. Building on our previous work extending the cycle life of lithium metal anodes via surface functionalization with silane groups, we have identified two separate regimes for the cycle life enhancements based on size of the silane R-groups. Very small R-groups (TMS) and R-groups bulkier than triphenyl show enhanced cycle life compared to control samples while R-groups between these in size show reduced cycle life. Additionally, we present a comparison between different cleaning methods to optimize the hydroxyl functionalized layer on the lithium metal and the influence of these methods on the stability of lithium metal in EC:EMC electrolyte. A solvent based cleaning approach is shown to substantially improve stability when combined with chlorotrimethyl silane treatment.</EA>
<CC>001D05I03E</CC>
<FD>Préparation surface; Anode; Batterie lithium; Etude comparative; Compatibilité électromagnétique; Electrolyte; Accumulateur électrochimique; Revêtement; Lithium; Soufre; Sulfure de thulium; TmS; Batterie lithium-air</FD>
<FG>Accumulateur alcalin</FG>
<ED>Surface preparation; Anode; Lithium battery; Comparative study; Electromagnetic compatibility; Electrolyte; Secondary cell; Coatings; Lithium; Sulfur; Thulium sulfides; Lithium-air battery</ED>
<EG>Alkaline storage battery</EG>
<SD>Preparación superficie; Anodo; Estudio comparativo; Compatibilidad electromagnética; Electrólito; Acumulador electroquímico; Revestimiento; Litio; Azufre</SD>
<LO>INIST-17113.354000509777690390</LO>
<ID>12-0170302</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000162 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Corpus/biblio.hfd -nk 000162 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0170302
   |texte=   Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024