Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In vivo near‐infrared fluorescence imaging of cancer with nanoparticle‐based probes

Identifieur interne : 000D25 ( Main/Exploration ); précédent : 000D24; suivant : 000D26

In vivo near‐infrared fluorescence imaging of cancer with nanoparticle‐based probes

Auteurs : Xiaoxiao He [États-Unis, République populaire de Chine] ; Kemin Wang [République populaire de Chine] ; Zhen Cheng [États-Unis]

Source :

RBID : ISTEX:E13A8489350CD5D1209BF3DF5C81BAABFC7C9B05

Descripteurs français

English descriptors

Abstract

The use of in vivo near‐infrared fluorescence (NIRF) imaging techniques for sensitive cancer early detection is highly desirable, because biological tissues show very low absorption and autofluorescence in the NIR spectrum window. Cancer NIRF molecular imaging relies greatly on stable, highly specific and sensitive molecular probes. Nanoparticle‐based NIRF probes have overcome some of the limitations of the conventional NIRF organic dyes, such as poor hydrophilicity and photostability, low quantum yield, insufficient stability in biological system, low detection sensitivity, etc. Therefore, a lot of efforts have been made to actively develop novel NIRF nanoparticles for in vivo cancer molecular imaging. The main focus of this article is to provide a brief overview of the synthesis, surface modification, and in vivo cancer imaging applications of nanoparticle‐based NIRF probes, including dye‐containing nanoparticles, NIRF quantum dots, and upconversion nanoparticles. WIREs Nanomed Nanobiotechnol 2010 2 349–366 For further resources related to this article, please visit the WIREs website

Url:
DOI: 10.1002/wnan.85


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vivo near‐infrared fluorescence imaging of cancer with nanoparticle‐based probes</title>
<author>
<name sortKey="He, Xiaoxiao" sort="He, Xiaoxiao" uniqKey="He X" first="Xiaoxiao" last="He">Xiaoxiao He</name>
</author>
<author>
<name sortKey="Wang, Kemin" sort="Wang, Kemin" uniqKey="Wang K" first="Kemin" last="Wang">Kemin Wang</name>
</author>
<author>
<name sortKey="Cheng, Zhen" sort="Cheng, Zhen" uniqKey="Cheng Z" first="Zhen" last="Cheng">Zhen Cheng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E13A8489350CD5D1209BF3DF5C81BAABFC7C9B05</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/wnan.85</idno>
<idno type="url">https://api.istex.fr/document/E13A8489350CD5D1209BF3DF5C81BAABFC7C9B05/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003179</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003179</idno>
<idno type="wicri:Area/Istex/Curation">003179</idno>
<idno type="wicri:Area/Istex/Checkpoint">000306</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000306</idno>
<idno type="wicri:doubleKey">1939-5116:2010:He X:in:vivo:near</idno>
<idno type="wicri:Area/Main/Merge">000D35</idno>
<idno type="wicri:Area/Main/Curation">000D25</idno>
<idno type="wicri:Area/Main/Exploration">000D25</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">
<hi rend="italic">In vivo</hi>
near‐infrared fluorescence imaging of cancer with nanoparticle‐based probes</title>
<author>
<name sortKey="He, Xiaoxiao" sort="He, Xiaoxiao" uniqKey="He X" first="Xiaoxiao" last="He">Xiaoxiao He</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio‐X Program and Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA 94305</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, Hunan University, Changsha 410082</wicri:regionArea>
<wicri:noRegion>Changsha 410082</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Kemin" sort="Wang, Kemin" uniqKey="Wang K" first="Kemin" last="Wang">Kemin Wang</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, Hunan University, Changsha 410082</wicri:regionArea>
<wicri:noRegion>Changsha 410082</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Zhen" sort="Cheng, Zhen" uniqKey="Cheng Z" first="Zhen" last="Cheng">Zhen Cheng</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio‐X Program and Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA 94305</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Correspondence address: Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio‐X Program and Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA 94305</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</title>
<title level="j" type="alt">WILEY INTERDISCIPLINARY REVIEWS: NANOMEDICINE AND NANOBIOTECHNOLOGY</title>
<idno type="ISSN">1939-5116</idno>
<idno type="eISSN">1939-0041</idno>
<imprint>
<biblScope unit="vol">2</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="349">349</biblScope>
<biblScope unit="page" to="366">366</biblScope>
<biblScope unit="page-count">18</biblScope>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>Hoboken, USA</pubPlace>
<date type="published" when="2010-07">2010-07</date>
</imprint>
<idno type="ISSN">1939-5116</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1939-5116</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alloyed</term>
<term>American chemical society</term>
<term>Anal chem</term>
<term>Apolar core</term>
<term>Aqueous solution</term>
<term>Biomolecules</term>
<term>Biotechnol</term>
<term>Calcium phosphate nanoparticles</term>
<term>Cancer detection</term>
<term>Chem</term>
<term>Chem mater</term>
<term>Chen</term>
<term>Coprecipitation method</term>
<term>Copyright</term>
<term>Cpnps</term>
<term>Deep tissues</term>
<term>Dye</term>
<term>Excitation</term>
<term>Folic acid</term>
<term>High sensitivity</term>
<term>Hydrothermal</term>
<term>Hydrothermal method</term>
<term>Imaging</term>
<term>Lett</term>
<term>Ligand</term>
<term>Lipoprotein</term>
<term>Luminescence</term>
<term>Magnetic resonance imaging</term>
<term>Mater</term>
<term>Molecular imaging</term>
<term>Multicolor</term>
<term>Nano</term>
<term>Nano lett</term>
<term>Nanobiotechnology</term>
<term>Nanocrystals</term>
<term>Nanomedicine</term>
<term>Nanoparticle</term>
<term>Nanoparticlebased nirf probes</term>
<term>Nanoparticles</term>
<term>Nanosci nanotechnol</term>
<term>Nanotechnology</term>
<term>Nayf4</term>
<term>Nirf</term>
<term>Nirf dyes</term>
<term>Nirf probes</term>
<term>Nirf silica nanoparticles</term>
<term>Noninvasive</term>
<term>Optical imaging</term>
<term>Phospholipid monolayer</term>
<term>Phys</term>
<term>Phys chem</term>
<term>Precursor</term>
<term>Probe</term>
<term>Proc natl acad</term>
<term>Quantum</term>
<term>Quantum dots</term>
<term>Rare earth ions</term>
<term>Receptor</term>
<term>Semiconductor</term>
<term>Silica</term>
<term>Silica nanoparticles</term>
<term>Synthetic routes</term>
<term>Thermal decomposition</term>
<term>Toxicity</term>
<term>Tumor vasculature</term>
<term>Ucns</term>
<term>Uorescence</term>
<term>Uorescence imaging</term>
<term>Uorescence imaging wires nanomedicine</term>
<term>Uorescence signal</term>
<term>Uorescence signals</term>
<term>Uorescent</term>
<term>Uorescent nanoparticles</term>
<term>Uorophores</term>
<term>Upconversion</term>
<term>Upconversion luminescence</term>
<term>Upconversion nanoparticles</term>
<term>Upconverting</term>
<term>Vivo</term>
<term>Vivo cancer</term>
<term>Vivo cancer imaging</term>
<term>Vivo imaging</term>
<term>Wang</term>
<term>Wires nanomed nanobiotechnol</term>
<term>Zhang</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Alloyed</term>
<term>American chemical society</term>
<term>Anal chem</term>
<term>Apolar core</term>
<term>Aqueous solution</term>
<term>Biomolecules</term>
<term>Biotechnol</term>
<term>Calcium phosphate nanoparticles</term>
<term>Cancer detection</term>
<term>Chem</term>
<term>Chem mater</term>
<term>Chen</term>
<term>Coprecipitation method</term>
<term>Copyright</term>
<term>Cpnps</term>
<term>Deep tissues</term>
<term>Dye</term>
<term>Excitation</term>
<term>Folic acid</term>
<term>High sensitivity</term>
<term>Hydrothermal</term>
<term>Hydrothermal method</term>
<term>Imaging</term>
<term>Lett</term>
<term>Ligand</term>
<term>Lipoprotein</term>
<term>Luminescence</term>
<term>Magnetic resonance imaging</term>
<term>Mater</term>
<term>Molecular imaging</term>
<term>Multicolor</term>
<term>Nano</term>
<term>Nano lett</term>
<term>Nanobiotechnology</term>
<term>Nanocrystals</term>
<term>Nanomedicine</term>
<term>Nanoparticle</term>
<term>Nanoparticlebased nirf probes</term>
<term>Nanoparticles</term>
<term>Nanosci nanotechnol</term>
<term>Nanotechnology</term>
<term>Nayf4</term>
<term>Nirf</term>
<term>Nirf dyes</term>
<term>Nirf probes</term>
<term>Nirf silica nanoparticles</term>
<term>Noninvasive</term>
<term>Optical imaging</term>
<term>Phospholipid monolayer</term>
<term>Phys</term>
<term>Phys chem</term>
<term>Precursor</term>
<term>Probe</term>
<term>Proc natl acad</term>
<term>Quantum</term>
<term>Quantum dots</term>
<term>Rare earth ions</term>
<term>Receptor</term>
<term>Semiconductor</term>
<term>Silica</term>
<term>Silica nanoparticles</term>
<term>Synthetic routes</term>
<term>Thermal decomposition</term>
<term>Toxicity</term>
<term>Tumor vasculature</term>
<term>Ucns</term>
<term>Uorescence</term>
<term>Uorescence imaging</term>
<term>Uorescence imaging wires nanomedicine</term>
<term>Uorescence signal</term>
<term>Uorescence signals</term>
<term>Uorescent</term>
<term>Uorescent nanoparticles</term>
<term>Uorophores</term>
<term>Upconversion</term>
<term>Upconversion luminescence</term>
<term>Upconversion nanoparticles</term>
<term>Upconverting</term>
<term>Vivo</term>
<term>Vivo cancer</term>
<term>Vivo cancer imaging</term>
<term>Vivo imaging</term>
<term>Wang</term>
<term>Wires nanomed nanobiotechnol</term>
<term>Zhang</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Droit d'auteur</term>
<term>Nanotechnologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The use of in vivo near‐infrared fluorescence (NIRF) imaging techniques for sensitive cancer early detection is highly desirable, because biological tissues show very low absorption and autofluorescence in the NIR spectrum window. Cancer NIRF molecular imaging relies greatly on stable, highly specific and sensitive molecular probes. Nanoparticle‐based NIRF probes have overcome some of the limitations of the conventional NIRF organic dyes, such as poor hydrophilicity and photostability, low quantum yield, insufficient stability in biological system, low detection sensitivity, etc. Therefore, a lot of efforts have been made to actively develop novel NIRF nanoparticles for in vivo cancer molecular imaging. The main focus of this article is to provide a brief overview of the synthesis, surface modification, and in vivo cancer imaging applications of nanoparticle‐based NIRF probes, including dye‐containing nanoparticles, NIRF quantum dots, and upconversion nanoparticles. WIREs Nanomed Nanobiotechnol 2010 2 349–366 For further resources related to this article, please visit the WIREs website</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="He, Xiaoxiao" sort="He, Xiaoxiao" uniqKey="He X" first="Xiaoxiao" last="He">Xiaoxiao He</name>
</region>
<name sortKey="Cheng, Zhen" sort="Cheng, Zhen" uniqKey="Cheng Z" first="Zhen" last="Cheng">Zhen Cheng</name>
<name sortKey="Cheng, Zhen" sort="Cheng, Zhen" uniqKey="Cheng Z" first="Zhen" last="Cheng">Zhen Cheng</name>
<name sortKey="Cheng, Zhen" sort="Cheng, Zhen" uniqKey="Cheng Z" first="Zhen" last="Cheng">Zhen Cheng</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="He, Xiaoxiao" sort="He, Xiaoxiao" uniqKey="He X" first="Xiaoxiao" last="He">Xiaoxiao He</name>
</noRegion>
<name sortKey="Wang, Kemin" sort="Wang, Kemin" uniqKey="Wang K" first="Kemin" last="Wang">Kemin Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D25 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D25 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:E13A8489350CD5D1209BF3DF5C81BAABFC7C9B05
   |texte=   In vivo near‐infrared fluorescence imaging of cancer with nanoparticle‐based probes
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024