Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA−)

Identifieur interne : 000637 ( Istex/Checkpoint ); précédent : 000636; suivant : 000638

Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA−)

Auteurs : Sait Kubilay Pakin [États-Unis] ; S. K. Hekmatyar [États-Unis] ; Paige Hopewell [États-Unis] ; Andriy Babsky [États-Unis] ; Navin Bansal [États-Unis]

Source :

RBID : ISTEX:CD206A9E47CB5A14E958B7FD24283566E7BB08BF

Descripteurs français

English descriptors

Abstract

Non‐invasive thermometry using hyperfine‐shifted MR signals from paramagnetic lanthanide complexes has attracted attention recently because the chemical shifts of these complexes are many times more sensitive to temperature than the water 1H signal. Among all the lanthanide complexes examined thus far, thulium tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (TmDOTMA−) appears to be the most suitable for MR thermometry. In this paper, the feasibility of imaging the methyl 1H signal from TmDOTMA− using a frequency‐selective radiofrequency excitation pulse and chemical shift‐selective (CHESS) water suppression is demonstrated. A temperature imaging method using a phase‐sensitive spin‐echo imaging sequence was validated in phantom experiments. A comparison of regional temperature changes measured with fiber‐optic probes and the temperatures calculated from the phase shift near each probe showed that the accuracy of imaging the temperature with TmDOTMA− is at least 0.1–0.2°C. The feasibility of imaging temperature changes in an intact rat at 0.5–0.6 mmol/kg dose in only a few minutes is demonstrated. Similar to commonly used MRI contrast agents, the lanthanide complex does not cross the blood–brain barrier. TmDOTMA− may prove useful for temperature imaging in many biomedical applications but further studies relating to acceptable dose and signal‐to‐noise ratio are necessary before clinical applications. Copyright © 2006 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nbm.1010


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:CD206A9E47CB5A14E958B7FD24283566E7BB08BF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA−)</title>
<author>
<name sortKey="Pakin, Sait Kubilay" sort="Pakin, Sait Kubilay" uniqKey="Pakin S" first="Sait Kubilay" last="Pakin">Sait Kubilay Pakin</name>
</author>
<author>
<name sortKey="Hekmatyar, S K" sort="Hekmatyar, S K" uniqKey="Hekmatyar S" first="S. K." last="Hekmatyar">S. K. Hekmatyar</name>
</author>
<author>
<name sortKey="Hopewell, Paige" sort="Hopewell, Paige" uniqKey="Hopewell P" first="Paige" last="Hopewell">Paige Hopewell</name>
</author>
<author>
<name sortKey="Babsky, Andriy" sort="Babsky, Andriy" uniqKey="Babsky A" first="Andriy" last="Babsky">Andriy Babsky</name>
</author>
<author>
<name sortKey="Bansal, Navin" sort="Bansal, Navin" uniqKey="Bansal N" first="Navin" last="Bansal">Navin Bansal</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CD206A9E47CB5A14E958B7FD24283566E7BB08BF</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1002/nbm.1010</idno>
<idno type="url">https://api.istex.fr/document/CD206A9E47CB5A14E958B7FD24283566E7BB08BF/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002D47</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002D47</idno>
<idno type="wicri:Area/Istex/Curation">002D47</idno>
<idno type="wicri:Area/Istex/Checkpoint">000637</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000637</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA
<hi rend="superscript"></hi>
)</title>
<author>
<name sortKey="Pakin, Sait Kubilay" sort="Pakin, Sait Kubilay" uniqKey="Pakin S" first="Sait Kubilay" last="Pakin">Sait Kubilay Pakin</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hekmatyar, S K" sort="Hekmatyar, S K" uniqKey="Hekmatyar S" first="S. K." last="Hekmatyar">S. K. Hekmatyar</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hopewell, Paige" sort="Hopewell, Paige" uniqKey="Hopewell P" first="Paige" last="Hopewell">Paige Hopewell</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Babsky, Andriy" sort="Babsky, Andriy" uniqKey="Babsky A" first="Andriy" last="Babsky">Andriy Babsky</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bansal, Navin" sort="Bansal, Navin" uniqKey="Bansal N" first="Navin" last="Bansal">Navin Bansal</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Correspondence address: Department of Radiology, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN 46202‐5181</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="ISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<imprint>
<biblScope unit="vol">19</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="116">116</biblScope>
<biblScope unit="page" to="124">124</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2006-02">2006-02</date>
</imprint>
<idno type="ISSN">0952-3480</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0952-3480</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceptable dose</term>
<term>Bansal</term>
<term>Biomed</term>
<term>Body weight</term>
<term>Chemical shift</term>
<term>Chemical shift imaging</term>
<term>Chemical shifts</term>
<term>Chess water suppression</term>
<term>Clinical applications</term>
<term>Copyright</term>
<term>Data collection</term>
<term>Data matrix</term>
<term>Echo time</term>
<term>Equivalent protons</term>
<term>Hyperthermia</term>
<term>Imaging</term>
<term>Imaging experiments</term>
<term>Imaging parameters</term>
<term>Imaging sequence</term>
<term>Imaging temperature</term>
<term>Imaging temperature changes</term>
<term>Imaging tmdotma</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Lanthanide complexes</term>
<term>Magn</term>
<term>Mapping temperature changes</term>
<term>Matrix</term>
<term>Methyl</term>
<term>Methyl groups</term>
<term>Methyl signal</term>
<term>Paramagnetic lanthanide complexes</term>
<term>Phantom</term>
<term>Phase images</term>
<term>Phase shift</term>
<term>Rectal temperature</term>
<term>Regional temperature changes</term>
<term>Regression analysis</term>
<term>Representative transaxial slices</term>
<term>Reson</term>
<term>Same depth</term>
<term>Second half</term>
<term>Signal transients</term>
<term>Spectroscopic imaging</term>
<term>Strong water signal</term>
<term>Temperature change</term>
<term>Temperature changes</term>
<term>Temperature dependence</term>
<term>Temperature imaging</term>
<term>Temperature imaging method</term>
<term>Temperature mapping</term>
<term>Temperature measurement</term>
<term>Temperature probes</term>
<term>Temperature sensitivity</term>
<term>Thermometry</term>
<term>Thulium</term>
<term>Tmdota</term>
<term>Tmdotma</term>
<term>Total imaging time</term>
<term>Transaxial</term>
<term>Vivo</term>
<term>Vivo temperature changes</term>
<term>Water image</term>
<term>Water signal</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acceptable dose</term>
<term>Bansal</term>
<term>Biomed</term>
<term>Body weight</term>
<term>Chemical shift</term>
<term>Chemical shift imaging</term>
<term>Chemical shifts</term>
<term>Chess water suppression</term>
<term>Clinical applications</term>
<term>Copyright</term>
<term>Data collection</term>
<term>Data matrix</term>
<term>Echo time</term>
<term>Equivalent protons</term>
<term>Hyperthermia</term>
<term>Imaging</term>
<term>Imaging experiments</term>
<term>Imaging parameters</term>
<term>Imaging sequence</term>
<term>Imaging temperature</term>
<term>Imaging temperature changes</term>
<term>Imaging tmdotma</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Lanthanide complexes</term>
<term>Magn</term>
<term>Mapping temperature changes</term>
<term>Matrix</term>
<term>Methyl</term>
<term>Methyl groups</term>
<term>Methyl signal</term>
<term>Paramagnetic lanthanide complexes</term>
<term>Phantom</term>
<term>Phase images</term>
<term>Phase shift</term>
<term>Rectal temperature</term>
<term>Regional temperature changes</term>
<term>Regression analysis</term>
<term>Representative transaxial slices</term>
<term>Reson</term>
<term>Same depth</term>
<term>Second half</term>
<term>Signal transients</term>
<term>Spectroscopic imaging</term>
<term>Strong water signal</term>
<term>Temperature change</term>
<term>Temperature changes</term>
<term>Temperature dependence</term>
<term>Temperature imaging</term>
<term>Temperature imaging method</term>
<term>Temperature mapping</term>
<term>Temperature measurement</term>
<term>Temperature probes</term>
<term>Temperature sensitivity</term>
<term>Thermometry</term>
<term>Thulium</term>
<term>Tmdota</term>
<term>Tmdotma</term>
<term>Total imaging time</term>
<term>Transaxial</term>
<term>Vivo</term>
<term>Vivo temperature changes</term>
<term>Water image</term>
<term>Water signal</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Droit d'auteur</term>
<term>Collecte de données</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Non‐invasive thermometry using hyperfine‐shifted MR signals from paramagnetic lanthanide complexes has attracted attention recently because the chemical shifts of these complexes are many times more sensitive to temperature than the water 1H signal. Among all the lanthanide complexes examined thus far, thulium tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (TmDOTMA−) appears to be the most suitable for MR thermometry. In this paper, the feasibility of imaging the methyl 1H signal from TmDOTMA− using a frequency‐selective radiofrequency excitation pulse and chemical shift‐selective (CHESS) water suppression is demonstrated. A temperature imaging method using a phase‐sensitive spin‐echo imaging sequence was validated in phantom experiments. A comparison of regional temperature changes measured with fiber‐optic probes and the temperatures calculated from the phase shift near each probe showed that the accuracy of imaging the temperature with TmDOTMA− is at least 0.1–0.2°C. The feasibility of imaging temperature changes in an intact rat at 0.5–0.6 mmol/kg dose in only a few minutes is demonstrated. Similar to commonly used MRI contrast agents, the lanthanide complex does not cross the blood–brain barrier. TmDOTMA− may prove useful for temperature imaging in many biomedical applications but further studies relating to acceptable dose and signal‐to‐noise ratio are necessary before clinical applications. Copyright © 2006 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Indiana</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Indiana">
<name sortKey="Pakin, Sait Kubilay" sort="Pakin, Sait Kubilay" uniqKey="Pakin S" first="Sait Kubilay" last="Pakin">Sait Kubilay Pakin</name>
</region>
<name sortKey="Babsky, Andriy" sort="Babsky, Andriy" uniqKey="Babsky A" first="Andriy" last="Babsky">Andriy Babsky</name>
<name sortKey="Bansal, Navin" sort="Bansal, Navin" uniqKey="Bansal N" first="Navin" last="Bansal">Navin Bansal</name>
<name sortKey="Bansal, Navin" sort="Bansal, Navin" uniqKey="Bansal N" first="Navin" last="Bansal">Navin Bansal</name>
<name sortKey="Bansal, Navin" sort="Bansal, Navin" uniqKey="Bansal N" first="Navin" last="Bansal">Navin Bansal</name>
<name sortKey="Hekmatyar, S K" sort="Hekmatyar, S K" uniqKey="Hekmatyar S" first="S. K." last="Hekmatyar">S. K. Hekmatyar</name>
<name sortKey="Hopewell, Paige" sort="Hopewell, Paige" uniqKey="Hopewell P" first="Paige" last="Hopewell">Paige Hopewell</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000637 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 000637 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:CD206A9E47CB5A14E958B7FD24283566E7BB08BF
   |texte=   Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA−)
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024