Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA−)

Identifieur interne : 002D47 ( Istex/Corpus ); précédent : 002D46; suivant : 002D48

Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA−)

Auteurs : Sait Kubilay Pakin ; S. K. Hekmatyar ; Paige Hopewell ; Andriy Babsky ; Navin Bansal

Source :

RBID : ISTEX:CD206A9E47CB5A14E958B7FD24283566E7BB08BF

English descriptors

Abstract

Non‐invasive thermometry using hyperfine‐shifted MR signals from paramagnetic lanthanide complexes has attracted attention recently because the chemical shifts of these complexes are many times more sensitive to temperature than the water 1H signal. Among all the lanthanide complexes examined thus far, thulium tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (TmDOTMA−) appears to be the most suitable for MR thermometry. In this paper, the feasibility of imaging the methyl 1H signal from TmDOTMA− using a frequency‐selective radiofrequency excitation pulse and chemical shift‐selective (CHESS) water suppression is demonstrated. A temperature imaging method using a phase‐sensitive spin‐echo imaging sequence was validated in phantom experiments. A comparison of regional temperature changes measured with fiber‐optic probes and the temperatures calculated from the phase shift near each probe showed that the accuracy of imaging the temperature with TmDOTMA− is at least 0.1–0.2°C. The feasibility of imaging temperature changes in an intact rat at 0.5–0.6 mmol/kg dose in only a few minutes is demonstrated. Similar to commonly used MRI contrast agents, the lanthanide complex does not cross the blood–brain barrier. TmDOTMA− may prove useful for temperature imaging in many biomedical applications but further studies relating to acceptable dose and signal‐to‐noise ratio are necessary before clinical applications. Copyright © 2006 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nbm.1010

Links to Exploration step

ISTEX:CD206A9E47CB5A14E958B7FD24283566E7BB08BF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA−)</title>
<author>
<name sortKey="Pakin, Sait Kubilay" sort="Pakin, Sait Kubilay" uniqKey="Pakin S" first="Sait Kubilay" last="Pakin">Sait Kubilay Pakin</name>
<affiliation>
<mods:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hekmatyar, S K" sort="Hekmatyar, S K" uniqKey="Hekmatyar S" first="S. K." last="Hekmatyar">S. K. Hekmatyar</name>
<affiliation>
<mods:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hopewell, Paige" sort="Hopewell, Paige" uniqKey="Hopewell P" first="Paige" last="Hopewell">Paige Hopewell</name>
<affiliation>
<mods:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Babsky, Andriy" sort="Babsky, Andriy" uniqKey="Babsky A" first="Andriy" last="Babsky">Andriy Babsky</name>
<affiliation>
<mods:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bansal, Navin" sort="Bansal, Navin" uniqKey="Bansal N" first="Navin" last="Bansal">Navin Bansal</name>
<affiliation>
<mods:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: nbansal@iupui.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Radiology, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN 46202‐5181, USA.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CD206A9E47CB5A14E958B7FD24283566E7BB08BF</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1002/nbm.1010</idno>
<idno type="url">https://api.istex.fr/document/CD206A9E47CB5A14E958B7FD24283566E7BB08BF/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002D47</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002D47</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA
<hi rend="superscript"></hi>
)</title>
<author>
<name sortKey="Pakin, Sait Kubilay" sort="Pakin, Sait Kubilay" uniqKey="Pakin S" first="Sait Kubilay" last="Pakin">Sait Kubilay Pakin</name>
<affiliation>
<mods:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hekmatyar, S K" sort="Hekmatyar, S K" uniqKey="Hekmatyar S" first="S. K." last="Hekmatyar">S. K. Hekmatyar</name>
<affiliation>
<mods:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hopewell, Paige" sort="Hopewell, Paige" uniqKey="Hopewell P" first="Paige" last="Hopewell">Paige Hopewell</name>
<affiliation>
<mods:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Babsky, Andriy" sort="Babsky, Andriy" uniqKey="Babsky A" first="Andriy" last="Babsky">Andriy Babsky</name>
<affiliation>
<mods:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bansal, Navin" sort="Bansal, Navin" uniqKey="Bansal N" first="Navin" last="Bansal">Navin Bansal</name>
<affiliation>
<mods:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: nbansal@iupui.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Radiology, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN 46202‐5181, USA.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="ISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<imprint>
<biblScope unit="vol">19</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="116">116</biblScope>
<biblScope unit="page" to="124">124</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2006-02">2006-02</date>
</imprint>
<idno type="ISSN">0952-3480</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0952-3480</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceptable dose</term>
<term>Bansal</term>
<term>Biomed</term>
<term>Body weight</term>
<term>Chemical shift</term>
<term>Chemical shift imaging</term>
<term>Chemical shifts</term>
<term>Chess water suppression</term>
<term>Clinical applications</term>
<term>Copyright</term>
<term>Data collection</term>
<term>Data matrix</term>
<term>Echo time</term>
<term>Equivalent protons</term>
<term>Hyperthermia</term>
<term>Imaging</term>
<term>Imaging experiments</term>
<term>Imaging parameters</term>
<term>Imaging sequence</term>
<term>Imaging temperature</term>
<term>Imaging temperature changes</term>
<term>Imaging tmdotma</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Lanthanide complexes</term>
<term>Magn</term>
<term>Mapping temperature changes</term>
<term>Matrix</term>
<term>Methyl</term>
<term>Methyl groups</term>
<term>Methyl signal</term>
<term>Paramagnetic lanthanide complexes</term>
<term>Phantom</term>
<term>Phase images</term>
<term>Phase shift</term>
<term>Rectal temperature</term>
<term>Regional temperature changes</term>
<term>Regression analysis</term>
<term>Representative transaxial slices</term>
<term>Reson</term>
<term>Same depth</term>
<term>Second half</term>
<term>Signal transients</term>
<term>Spectroscopic imaging</term>
<term>Strong water signal</term>
<term>Temperature change</term>
<term>Temperature changes</term>
<term>Temperature dependence</term>
<term>Temperature imaging</term>
<term>Temperature imaging method</term>
<term>Temperature mapping</term>
<term>Temperature measurement</term>
<term>Temperature probes</term>
<term>Temperature sensitivity</term>
<term>Thermometry</term>
<term>Thulium</term>
<term>Tmdota</term>
<term>Tmdotma</term>
<term>Total imaging time</term>
<term>Transaxial</term>
<term>Vivo</term>
<term>Vivo temperature changes</term>
<term>Water image</term>
<term>Water signal</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acceptable dose</term>
<term>Bansal</term>
<term>Biomed</term>
<term>Body weight</term>
<term>Chemical shift</term>
<term>Chemical shift imaging</term>
<term>Chemical shifts</term>
<term>Chess water suppression</term>
<term>Clinical applications</term>
<term>Copyright</term>
<term>Data collection</term>
<term>Data matrix</term>
<term>Echo time</term>
<term>Equivalent protons</term>
<term>Hyperthermia</term>
<term>Imaging</term>
<term>Imaging experiments</term>
<term>Imaging parameters</term>
<term>Imaging sequence</term>
<term>Imaging temperature</term>
<term>Imaging temperature changes</term>
<term>Imaging tmdotma</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Lanthanide complexes</term>
<term>Magn</term>
<term>Mapping temperature changes</term>
<term>Matrix</term>
<term>Methyl</term>
<term>Methyl groups</term>
<term>Methyl signal</term>
<term>Paramagnetic lanthanide complexes</term>
<term>Phantom</term>
<term>Phase images</term>
<term>Phase shift</term>
<term>Rectal temperature</term>
<term>Regional temperature changes</term>
<term>Regression analysis</term>
<term>Representative transaxial slices</term>
<term>Reson</term>
<term>Same depth</term>
<term>Second half</term>
<term>Signal transients</term>
<term>Spectroscopic imaging</term>
<term>Strong water signal</term>
<term>Temperature change</term>
<term>Temperature changes</term>
<term>Temperature dependence</term>
<term>Temperature imaging</term>
<term>Temperature imaging method</term>
<term>Temperature mapping</term>
<term>Temperature measurement</term>
<term>Temperature probes</term>
<term>Temperature sensitivity</term>
<term>Thermometry</term>
<term>Thulium</term>
<term>Tmdota</term>
<term>Tmdotma</term>
<term>Total imaging time</term>
<term>Transaxial</term>
<term>Vivo</term>
<term>Vivo temperature changes</term>
<term>Water image</term>
<term>Water signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Non‐invasive thermometry using hyperfine‐shifted MR signals from paramagnetic lanthanide complexes has attracted attention recently because the chemical shifts of these complexes are many times more sensitive to temperature than the water 1H signal. Among all the lanthanide complexes examined thus far, thulium tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (TmDOTMA−) appears to be the most suitable for MR thermometry. In this paper, the feasibility of imaging the methyl 1H signal from TmDOTMA− using a frequency‐selective radiofrequency excitation pulse and chemical shift‐selective (CHESS) water suppression is demonstrated. A temperature imaging method using a phase‐sensitive spin‐echo imaging sequence was validated in phantom experiments. A comparison of regional temperature changes measured with fiber‐optic probes and the temperatures calculated from the phase shift near each probe showed that the accuracy of imaging the temperature with TmDOTMA− is at least 0.1–0.2°C. The feasibility of imaging temperature changes in an intact rat at 0.5–0.6 mmol/kg dose in only a few minutes is demonstrated. Similar to commonly used MRI contrast agents, the lanthanide complex does not cross the blood–brain barrier. TmDOTMA− may prove useful for temperature imaging in many biomedical applications but further studies relating to acceptable dose and signal‐to‐noise ratio are necessary before clinical applications. Copyright © 2006 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>tmdotma</json:string>
<json:string>tmdota</json:string>
<json:string>lanthanide</json:string>
<json:string>imaging</json:string>
<json:string>methyl signal</json:string>
<json:string>temperature changes</json:string>
<json:string>magn</json:string>
<json:string>reson</json:string>
<json:string>biomed</json:string>
<json:string>data matrix</json:string>
<json:string>hyperthermia</json:string>
<json:string>john wiley sons</json:string>
<json:string>transaxial</json:string>
<json:string>chemical shift</json:string>
<json:string>copyright</json:string>
<json:string>bansal</json:string>
<json:string>methyl</json:string>
<json:string>thulium</json:string>
<json:string>chemical shifts</json:string>
<json:string>water image</json:string>
<json:string>temperature imaging</json:string>
<json:string>mapping temperature changes</json:string>
<json:string>imaging temperature changes</json:string>
<json:string>imaging experiments</json:string>
<json:string>matrix</json:string>
<json:string>imaging parameters</json:string>
<json:string>imaging temperature</json:string>
<json:string>temperature mapping</json:string>
<json:string>spectroscopic imaging</json:string>
<json:string>strong water signal</json:string>
<json:string>phase shift</json:string>
<json:string>phantom</json:string>
<json:string>lanthanide complexes</json:string>
<json:string>imaging sequence</json:string>
<json:string>body weight</json:string>
<json:string>equivalent protons</json:string>
<json:string>signal transients</json:string>
<json:string>data collection</json:string>
<json:string>phase images</json:string>
<json:string>echo time</json:string>
<json:string>paramagnetic lanthanide complexes</json:string>
<json:string>temperature sensitivity</json:string>
<json:string>regional temperature changes</json:string>
<json:string>temperature dependence</json:string>
<json:string>thermometry</json:string>
<json:string>total imaging time</json:string>
<json:string>acceptable dose</json:string>
<json:string>second half</json:string>
<json:string>water signal</json:string>
<json:string>chemical shift imaging</json:string>
<json:string>temperature probes</json:string>
<json:string>same depth</json:string>
<json:string>chess water suppression</json:string>
<json:string>temperature imaging method</json:string>
<json:string>regression analysis</json:string>
<json:string>vivo temperature changes</json:string>
<json:string>clinical applications</json:string>
<json:string>imaging tmdotma</json:string>
<json:string>representative transaxial slices</json:string>
<json:string>temperature change</json:string>
<json:string>rectal temperature</json:string>
<json:string>methyl groups</json:string>
<json:string>temperature measurement</json:string>
<json:string>vivo</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Sait Kubilay Pakin</name>
<affiliations>
<json:string>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. K. Hekmatyar</name>
<affiliations>
<json:string>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Paige Hopewell</name>
<affiliations>
<json:string>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Andriy Babsky</name>
<affiliations>
<json:string>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Navin Bansal</name>
<affiliations>
<json:string>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</json:string>
<json:string>Department of Radiology, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN 46202‐5181, USA.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>thermometry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>lanthanide complexes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>paramagnetic shift</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>temperature imaging</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>1H MRI, in vivo</value>
</json:item>
</subject>
<articleId>
<json:string>NBM1010</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Non‐invasive thermometry using hyperfine‐shifted MR signals from paramagnetic lanthanide complexes has attracted attention recently because the chemical shifts of these complexes are many times more sensitive to temperature than the water 1H signal. Among all the lanthanide complexes examined thus far, thulium tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (TmDOTMA−) appears to be the most suitable for MR thermometry. In this paper, the feasibility of imaging the methyl 1H signal from TmDOTMA− using a frequency‐selective radiofrequency excitation pulse and chemical shift‐selective (CHESS) water suppression is demonstrated. A temperature imaging method using a phase‐sensitive spin‐echo imaging sequence was validated in phantom experiments. A comparison of regional temperature changes measured with fiber‐optic probes and the temperatures calculated from the phase shift near each probe showed that the accuracy of imaging the temperature with TmDOTMA− is at least 0.1–0.2°C. The feasibility of imaging temperature changes in an intact rat at 0.5–0.6 mmol/kg dose in only a few minutes is demonstrated. Similar to commonly used MRI contrast agents, the lanthanide complex does not cross the blood–brain barrier. TmDOTMA− may prove useful for temperature imaging in many biomedical applications but further studies relating to acceptable dose and signal‐to‐noise ratio are necessary before clinical applications. Copyright © 2006 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>7.4</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>598 x 795 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1479</abstractCharCount>
<pdfWordCount>6258</pdfWordCount>
<pdfCharCount>37414</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>200</abstractWordCount>
</qualityIndicators>
<title>Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA−)</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>NMR in Biomedicine</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1099-1492</json:string>
</doi>
<issn>
<json:string>0952-3480</json:string>
</issn>
<eissn>
<json:string>1099-1492</json:string>
</eissn>
<publisherId>
<json:string>NBM</json:string>
</publisherId>
<volume>19</volume>
<issue>1</issue>
<pages>
<first>116</first>
<last>124</last>
<total>9</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>spectroscopy</json:string>
<json:string>radiology, nuclear medicine & medical imaging</json:string>
<json:string>biophysics</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>nuclear medicine & medical imaging</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences medicales</json:string>
</inist>
</categories>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1002/nbm.1010</json:string>
</doi>
<id>CD206A9E47CB5A14E958B7FD24283566E7BB08BF</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/CD206A9E47CB5A14E958B7FD24283566E7BB08BF/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/CD206A9E47CB5A14E958B7FD24283566E7BB08BF/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/CD206A9E47CB5A14E958B7FD24283566E7BB08BF/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA
<hi rend="superscript"></hi>
)</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<licence>Copyright © 2006 John Wiley & Sons, Ltd.</licence>
</availability>
<date type="published" when="2006-02"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA
<hi rend="superscript"></hi>
)</title>
<title level="a" type="short" xml:lang="en">IMAGING TEMPERATURE WITH TmDOTMA</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Sait Kubilay</forename>
<surname>Pakin</surname>
</persName>
<affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">S. K.</forename>
<surname>Hekmatyar</surname>
</persName>
<affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Paige</forename>
<surname>Hopewell</surname>
</persName>
<affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Andriy</forename>
<surname>Babsky</surname>
</persName>
<affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004" role="corresp">
<persName>
<forename type="first">Navin</forename>
<surname>Bansal</surname>
</persName>
<email>nbansal@iupui.edu</email>
<affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Radiology, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN 46202‐5181, USA.</affiliation>
</author>
<idno type="istex">CD206A9E47CB5A14E958B7FD24283566E7BB08BF</idno>
<idno type="ark">ark:/67375/WNG-918RCDMJ-3</idno>
<idno type="DOI">10.1002/nbm.1010</idno>
<idno type="unit">NBM1010</idno>
<idno type="toTypesetVersion">file:NBM.NBM1010.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="pISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<idno type="book-DOI">10.1002/(ISSN)1099-1492</idno>
<idno type="book-part-DOI">10.1002/nbm.v19:1</idno>
<idno type="product">NBM</idno>
<imprint>
<biblScope unit="vol">19</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="116">116</biblScope>
<biblScope unit="page" to="124">124</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2006-02"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Non‐invasive thermometry using hyperfine‐shifted MR signals from paramagnetic lanthanide complexes has attracted attention recently because the chemical shifts of these complexes are many times more sensitive to temperature than the water
<hi rend="superscript">1</hi>
H signal. Among all the lanthanide complexes examined thus far, thulium tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (TmDOTMA
<hi rend="superscript"></hi>
) appears to be the most suitable for MR thermometry. In this paper, the feasibility of imaging the methyl
<hi rend="superscript">1</hi>
H signal from TmDOTMA
<hi rend="superscript"></hi>
using a frequency‐selective radiofrequency excitation pulse and chemical shift‐selective (CHESS) water suppression is demonstrated. A temperature imaging method using a phase‐sensitive spin‐echo imaging sequence was validated in phantom experiments. A comparison of regional temperature changes measured with fiber‐optic probes and the temperatures calculated from the phase shift near each probe showed that the accuracy of imaging the temperature with TmDOTMA
<hi rend="superscript"></hi>
is at least 0.1–0.2°C. The feasibility of imaging temperature changes in an intact rat at 0.5–0.6 mmol/kg dose in only a few minutes is demonstrated. Similar to commonly used MRI contrast agents, the lanthanide complex does not cross the blood–brain barrier. TmDOTMA
<hi rend="superscript"></hi>
may prove useful for temperature imaging in many biomedical applications but further studies relating to acceptable dose and signal‐to‐noise ratio are necessary before clinical applications. Copyright © 2006 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">thermometry</term>
<term xml:id="kwd2">lanthanide complexes</term>
<term xml:id="kwd3">paramagnetic shift</term>
<term xml:id="kwd4">temperature imaging</term>
<term xml:id="kwd5">
<hi rend="superscript">1</hi>
H MRI,
<hi rend="italic">in vivo</hi>
</term>
</keywords>
<keywords rend="articleCategory">
<term>Research Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Research Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/CD206A9E47CB5A14E958B7FD24283566E7BB08BF/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1099-1492</doi>
<issn type="print">0952-3480</issn>
<issn type="electronic">1099-1492</issn>
<idGroup>
<id type="product" value="NBM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="NMR IN BIOMEDICINE">NMR in Biomedicine</title>
<title type="subtitle">An International Journal Devoted to the Development and Application of Magnetic Resonance
<i>In vivo</i>
</title>
<title type="short">NMR Biomed.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi origin="wiley" registered="yes">10.1002/nbm.v19:1</doi>
<numberingGroup>
<numbering type="journalVolume" number="19">19</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="2006-02">February 2006</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="140" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/nbm.1010</doi>
<idGroup>
<id type="unit" value="NBM1010"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2006 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2005-08-17"></event>
<event type="manuscriptRevised" date="2005-09-27"></event>
<event type="manuscriptAccepted" date="2005-10-30"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2006-01-10"></event>
<event type="firstOnline" date="2006-01-10"></event>
<event type="publishedOnlineFinalForm" date="2006-01-31"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-16"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-03"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">116</numbering>
<numbering type="pageLast">124</numbering>
</numberingGroup>
<correspondenceTo>Department of Radiology, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN 46202‐5181, USA.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:NBM.NBM1010.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="34"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA
<sup></sup>
)</title>
<title type="short" xml:lang="en">IMAGING TEMPERATURE WITH TmDOTMA</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Sait Kubilay</givenNames>
<familyName>Pakin</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>S. K.</givenNames>
<familyName>Hekmatyar</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Paige</givenNames>
<familyName>Hopewell</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Andriy</givenNames>
<familyName>Babsky</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Navin</givenNames>
<familyName>Bansal</familyName>
</personName>
<contactDetails>
<email>nbansal@iupui.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">thermometry</keyword>
<keyword xml:id="kwd2">lanthanide complexes</keyword>
<keyword xml:id="kwd3">paramagnetic shift</keyword>
<keyword xml:id="kwd4">temperature imaging</keyword>
<keyword xml:id="kwd5">
<sup>1</sup>
H MRI,
<i>in vivo</i>
</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>NIH</fundingAgency>
<fundingNumber>CA84434</fundingNumber>
<fundingNumber>CA94040</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Non‐invasive thermometry using hyperfine‐shifted MR signals from paramagnetic lanthanide complexes has attracted attention recently because the chemical shifts of these complexes are many times more sensitive to temperature than the water
<sup>1</sup>
H signal. Among all the lanthanide complexes examined thus far, thulium tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (TmDOTMA
<sup></sup>
) appears to be the most suitable for MR thermometry. In this paper, the feasibility of imaging the methyl
<sup>1</sup>
H signal from TmDOTMA
<sup></sup>
using a frequency‐selective radiofrequency excitation pulse and chemical shift‐selective (CHESS) water suppression is demonstrated. A temperature imaging method using a phase‐sensitive spin‐echo imaging sequence was validated in phantom experiments. A comparison of regional temperature changes measured with fiber‐optic probes and the temperatures calculated from the phase shift near each probe showed that the accuracy of imaging the temperature with TmDOTMA
<sup></sup>
is at least 0.1–0.2°C. The feasibility of imaging temperature changes in an intact rat at 0.5–0.6 mmol/kg dose in only a few minutes is demonstrated. Similar to commonly used MRI contrast agents, the lanthanide complex does not cross the blood–brain barrier. TmDOTMA
<sup></sup>
may prove useful for temperature imaging in many biomedical applications but further studies relating to acceptable dose and signal‐to‐noise ratio are necessary before clinical applications. Copyright © 2006 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA−)</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>IMAGING TEMPERATURE WITH TmDOTMA</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA−)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sait Kubilay</namePart>
<namePart type="family">Pakin</namePart>
<affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S. K.</namePart>
<namePart type="family">Hekmatyar</namePart>
<affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paige</namePart>
<namePart type="family">Hopewell</namePart>
<affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andriy</namePart>
<namePart type="family">Babsky</namePart>
<affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Navin</namePart>
<namePart type="family">Bansal</namePart>
<affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202‐5181, USA</affiliation>
<affiliation>E-mail: nbansal@iupui.edu</affiliation>
<affiliation>Correspondence address: Department of Radiology, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN 46202‐5181, USA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2006-02</dateIssued>
<dateCaptured encoding="w3cdtf">2005-08-17</dateCaptured>
<dateValid encoding="w3cdtf">2005-10-30</dateValid>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">5</extent>
<extent unit="tables">0</extent>
<extent unit="references">34</extent>
</physicalDescription>
<abstract lang="en">Non‐invasive thermometry using hyperfine‐shifted MR signals from paramagnetic lanthanide complexes has attracted attention recently because the chemical shifts of these complexes are many times more sensitive to temperature than the water 1H signal. Among all the lanthanide complexes examined thus far, thulium tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (TmDOTMA−) appears to be the most suitable for MR thermometry. In this paper, the feasibility of imaging the methyl 1H signal from TmDOTMA− using a frequency‐selective radiofrequency excitation pulse and chemical shift‐selective (CHESS) water suppression is demonstrated. A temperature imaging method using a phase‐sensitive spin‐echo imaging sequence was validated in phantom experiments. A comparison of regional temperature changes measured with fiber‐optic probes and the temperatures calculated from the phase shift near each probe showed that the accuracy of imaging the temperature with TmDOTMA− is at least 0.1–0.2°C. The feasibility of imaging temperature changes in an intact rat at 0.5–0.6 mmol/kg dose in only a few minutes is demonstrated. Similar to commonly used MRI contrast agents, the lanthanide complex does not cross the blood–brain barrier. TmDOTMA− may prove useful for temperature imaging in many biomedical applications but further studies relating to acceptable dose and signal‐to‐noise ratio are necessary before clinical applications. Copyright © 2006 John Wiley & Sons, Ltd.</abstract>
<note type="funding">NIH - No. CA84434; No. CA94040; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>thermometry</topic>
<topic>lanthanide complexes</topic>
<topic>paramagnetic shift</topic>
<topic>temperature imaging</topic>
<topic>1H MRI, in vivo</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>NMR in Biomedicine</title>
<subTitle>An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>NMR Biomed.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0952-3480</identifier>
<identifier type="eISSN">1099-1492</identifier>
<identifier type="DOI">10.1002/(ISSN)1099-1492</identifier>
<identifier type="PublisherID">NBM</identifier>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>116</start>
<end>124</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">CD206A9E47CB5A14E958B7FD24283566E7BB08BF</identifier>
<identifier type="ark">ark:/67375/WNG-918RCDMJ-3</identifier>
<identifier type="DOI">10.1002/nbm.1010</identifier>
<identifier type="ArticleID">NBM1010</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2006 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/CD206A9E47CB5A14E958B7FD24283566E7BB08BF/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002D47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CD206A9E47CB5A14E958B7FD24283566E7BB08BF
   |texte=   Non‐invasive temperature imaging with thulium 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetic acid (TmDOTMA−)
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024