Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanocrystalline silver supported on activated carbon matrix from hydrosol: antibacterial mechanism under prolonged incubation conditions.

Identifieur interne : 000B44 ( Main/Corpus ); précédent : 000B43; suivant : 000B45

Nanocrystalline silver supported on activated carbon matrix from hydrosol: antibacterial mechanism under prolonged incubation conditions.

Auteurs : Sukdeb Pal ; Yu Kyung Tak ; J. Joardar ; Wook Kim ; Jong Eun Lee ; Myun Soo Han ; Joon Myong Song

Source :

RBID : pubmed:19435087

English descriptors

Abstract

Nanocrystalline Silver-supported activated carbon (AC) was fabricated by directly loading silver nanoparticles into the porous AC matrix from a preformed nanosilver hydrosol. Silver-AC composites were also synthesized using a conventional thermal impregnation method. While XRD calculation indicated the presence of Ag crystallites in nanometer range, silver nanoparticle hydrosol-treated AC having the finest crystallite size CS (< 14.4 nm), SEM images clearly revealed that Ag crystals coalesced significantly with increasing temperature resulting in much larger particle size in thermally impregnated silver-AC composities. To clarify the antibacterial mechanism of silver nanoparticles impregnated into AC under prolonged incubation conditions the antibacterial activity was investigated against Gram-negative Escherichia coli. The kinetics of bacterial inactivation, in presence of hydroxyl radical (*OH) scavengers, and superoxide anion radical (*O2-) inducer suggest the contribution of the reactive oxygen species (ROS) to antibacterial effect. However, these ROS scavengers did not show any inhibition of bactericidal activity after approximately 1 h, suggesting that generated ROS are responsible for E. coli inactivation only during the initial 1 h of the incubation time. This study clearly indicates the plausible implication of eluted Ag+ as major lethal species responsible for the E. coli inactivation over extended process time. The antibacterial process was found to be highly promoted at higher temperature which was ascribed to the enhanced ROS formation and Ag+ elution at higher temperature. SEM images revealed considerable differences in the morphology of E. coli cells contacting with the virgin AC and that contacting with silver-supported AC. The strong antibacterial ability of formaldehyde-modified silver-supported AC further provided the indirect evidences for catalytic oxidation by ROS, and for the synergistic antibacterial effects of nanocrystalline silver and adsorbed formaldehyde. Comparison of the antibacterial activities of the silver-supported materials prepared by silver colloid deposition and by conventional thermal impregnation technique indicates that former is more efficient in controlling microorganism.

DOI: 10.1166/jnn.2009.427
PubMed: 19435087

Links to Exploration step

pubmed:19435087

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nanocrystalline silver supported on activated carbon matrix from hydrosol: antibacterial mechanism under prolonged incubation conditions.</title>
<author>
<name sortKey="Pal, Sukdeb" sort="Pal, Sukdeb" uniqKey="Pal S" first="Sukdeb" last="Pal">Sukdeb Pal</name>
<affiliation>
<nlm:affiliation>Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tak, Yu Kyung" sort="Tak, Yu Kyung" uniqKey="Tak Y" first="Yu Kyung" last="Tak">Yu Kyung Tak</name>
</author>
<author>
<name sortKey="Joardar, J" sort="Joardar, J" uniqKey="Joardar J" first="J" last="Joardar">J. Joardar</name>
</author>
<author>
<name sortKey="Kim, Wook" sort="Kim, Wook" uniqKey="Kim W" first="Wook" last="Kim">Wook Kim</name>
</author>
<author>
<name sortKey="Lee, Jong Eun" sort="Lee, Jong Eun" uniqKey="Lee J" first="Jong Eun" last="Lee">Jong Eun Lee</name>
</author>
<author>
<name sortKey="Han, Myun Soo" sort="Han, Myun Soo" uniqKey="Han M" first="Myun Soo" last="Han">Myun Soo Han</name>
</author>
<author>
<name sortKey="Song, Joon Myong" sort="Song, Joon Myong" uniqKey="Song J" first="Joon Myong" last="Song">Joon Myong Song</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19435087</idno>
<idno type="pmid">19435087</idno>
<idno type="doi">10.1166/jnn.2009.427</idno>
<idno type="wicri:Area/Main/Corpus">000B44</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nanocrystalline silver supported on activated carbon matrix from hydrosol: antibacterial mechanism under prolonged incubation conditions.</title>
<author>
<name sortKey="Pal, Sukdeb" sort="Pal, Sukdeb" uniqKey="Pal S" first="Sukdeb" last="Pal">Sukdeb Pal</name>
<affiliation>
<nlm:affiliation>Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tak, Yu Kyung" sort="Tak, Yu Kyung" uniqKey="Tak Y" first="Yu Kyung" last="Tak">Yu Kyung Tak</name>
</author>
<author>
<name sortKey="Joardar, J" sort="Joardar, J" uniqKey="Joardar J" first="J" last="Joardar">J. Joardar</name>
</author>
<author>
<name sortKey="Kim, Wook" sort="Kim, Wook" uniqKey="Kim W" first="Wook" last="Kim">Wook Kim</name>
</author>
<author>
<name sortKey="Lee, Jong Eun" sort="Lee, Jong Eun" uniqKey="Lee J" first="Jong Eun" last="Lee">Jong Eun Lee</name>
</author>
<author>
<name sortKey="Han, Myun Soo" sort="Han, Myun Soo" uniqKey="Han M" first="Myun Soo" last="Han">Myun Soo Han</name>
</author>
<author>
<name sortKey="Song, Joon Myong" sort="Song, Joon Myong" uniqKey="Song J" first="Joon Myong" last="Song">Joon Myong Song</name>
</author>
</analytic>
<series>
<title level="j">Journal of nanoscience and nanotechnology</title>
<idno type="ISSN">1533-4880</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Bacterial Agents (chemistry)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Charcoal (chemistry)</term>
<term>Charcoal (pharmacology)</term>
<term>Colloids (chemistry)</term>
<term>Escherichia coli (drug effects)</term>
<term>Formaldehyde (chemistry)</term>
<term>Free Radical Scavengers (chemistry)</term>
<term>Kinetics (MeSH)</term>
<term>Microbial Viability (drug effects)</term>
<term>Microscopy, Electron (MeSH)</term>
<term>Nanoparticles (chemistry)</term>
<term>Nanoparticles (ultrastructure)</term>
<term>Reactive Oxygen Species (MeSH)</term>
<term>Silver (chemistry)</term>
<term>Silver (pharmacology)</term>
<term>Spectrometry, X-Ray Emission (MeSH)</term>
<term>Temperature (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Charcoal</term>
<term>Colloids</term>
<term>Formaldehyde</term>
<term>Free Radical Scavengers</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Charcoal</term>
<term>Silver</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Escherichia coli</term>
<term>Microbial Viability</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Kinetics</term>
<term>Microscopy, Electron</term>
<term>Reactive Oxygen Species</term>
<term>Spectrometry, X-Ray Emission</term>
<term>Temperature</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nanocrystalline Silver-supported activated carbon (AC) was fabricated by directly loading silver nanoparticles into the porous AC matrix from a preformed nanosilver hydrosol. Silver-AC composites were also synthesized using a conventional thermal impregnation method. While XRD calculation indicated the presence of Ag crystallites in nanometer range, silver nanoparticle hydrosol-treated AC having the finest crystallite size CS (< 14.4 nm), SEM images clearly revealed that Ag crystals coalesced significantly with increasing temperature resulting in much larger particle size in thermally impregnated silver-AC composities. To clarify the antibacterial mechanism of silver nanoparticles impregnated into AC under prolonged incubation conditions the antibacterial activity was investigated against Gram-negative Escherichia coli. The kinetics of bacterial inactivation, in presence of hydroxyl radical (*OH) scavengers, and superoxide anion radical (*O2-) inducer suggest the contribution of the reactive oxygen species (ROS) to antibacterial effect. However, these ROS scavengers did not show any inhibition of bactericidal activity after approximately 1 h, suggesting that generated ROS are responsible for E. coli inactivation only during the initial 1 h of the incubation time. This study clearly indicates the plausible implication of eluted Ag+ as major lethal species responsible for the E. coli inactivation over extended process time. The antibacterial process was found to be highly promoted at higher temperature which was ascribed to the enhanced ROS formation and Ag+ elution at higher temperature. SEM images revealed considerable differences in the morphology of E. coli cells contacting with the virgin AC and that contacting with silver-supported AC. The strong antibacterial ability of formaldehyde-modified silver-supported AC further provided the indirect evidences for catalytic oxidation by ROS, and for the synergistic antibacterial effects of nanocrystalline silver and adsorbed formaldehyde. Comparison of the antibacterial activities of the silver-supported materials prepared by silver colloid deposition and by conventional thermal impregnation technique indicates that former is more efficient in controlling microorganism.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19435087</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>06</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>07</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1533-4880</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2009</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of nanoscience and nanotechnology</Title>
<ISOAbbreviation>J Nanosci Nanotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Nanocrystalline silver supported on activated carbon matrix from hydrosol: antibacterial mechanism under prolonged incubation conditions.</ArticleTitle>
<Pagination>
<MedlinePgn>2092-103</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Nanocrystalline Silver-supported activated carbon (AC) was fabricated by directly loading silver nanoparticles into the porous AC matrix from a preformed nanosilver hydrosol. Silver-AC composites were also synthesized using a conventional thermal impregnation method. While XRD calculation indicated the presence of Ag crystallites in nanometer range, silver nanoparticle hydrosol-treated AC having the finest crystallite size CS (< 14.4 nm), SEM images clearly revealed that Ag crystals coalesced significantly with increasing temperature resulting in much larger particle size in thermally impregnated silver-AC composities. To clarify the antibacterial mechanism of silver nanoparticles impregnated into AC under prolonged incubation conditions the antibacterial activity was investigated against Gram-negative Escherichia coli. The kinetics of bacterial inactivation, in presence of hydroxyl radical (*OH) scavengers, and superoxide anion radical (*O2-) inducer suggest the contribution of the reactive oxygen species (ROS) to antibacterial effect. However, these ROS scavengers did not show any inhibition of bactericidal activity after approximately 1 h, suggesting that generated ROS are responsible for E. coli inactivation only during the initial 1 h of the incubation time. This study clearly indicates the plausible implication of eluted Ag+ as major lethal species responsible for the E. coli inactivation over extended process time. The antibacterial process was found to be highly promoted at higher temperature which was ascribed to the enhanced ROS formation and Ag+ elution at higher temperature. SEM images revealed considerable differences in the morphology of E. coli cells contacting with the virgin AC and that contacting with silver-supported AC. The strong antibacterial ability of formaldehyde-modified silver-supported AC further provided the indirect evidences for catalytic oxidation by ROS, and for the synergistic antibacterial effects of nanocrystalline silver and adsorbed formaldehyde. Comparison of the antibacterial activities of the silver-supported materials prepared by silver colloid deposition and by conventional thermal impregnation technique indicates that former is more efficient in controlling microorganism.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pal</LastName>
<ForeName>Sukdeb</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tak</LastName>
<ForeName>Yu Kyung</ForeName>
<Initials>YK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Joardar</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Wook</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Jong Eun</ForeName>
<Initials>JE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Myun Soo</ForeName>
<Initials>MS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Joon Myong</ForeName>
<Initials>JM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Nanosci Nanotechnol</MedlineTA>
<NlmUniqueID>101088195</NlmUniqueID>
<ISSNLinking>1533-4880</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003102">Colloids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016166">Free Radical Scavengers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>16291-96-6</RegistryNumber>
<NameOfSubstance UI="D002606">Charcoal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1HG84L3525</RegistryNumber>
<NameOfSubstance UI="D005557">Formaldehyde</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002606" MajorTopicYN="N">Charcoal</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003102" MajorTopicYN="N">Colloids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005557" MajorTopicYN="N">Formaldehyde</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016166" MajorTopicYN="N">Free Radical Scavengers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050296" MajorTopicYN="N">Microbial Viability</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008854" MajorTopicYN="N">Microscopy, Electron</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053758" MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013052" MajorTopicYN="N">Spectrometry, X-Ray Emission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19435087</ArticleId>
<ArticleId IdType="doi">10.1166/jnn.2009.427</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000B44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19435087
   |texte=   Nanocrystalline silver supported on activated carbon matrix from hydrosol: antibacterial mechanism under prolonged incubation conditions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:19435087" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021