Serveur d'exploration SilverBacteriV1

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash.

Identifieur interne : 000936 ( Main/Corpus ); précédent : 000935; suivant : 000937

Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash.

Auteurs : Di He ; Atsushi Ikeda-Ohno ; Daniel D. Boland ; T David Waite

Source :

RBID : pubmed:23614704

English descriptors

Abstract

Silver nanoparticle (AgNP)-impregnated rice husks/rice hush ash (RHs/RHA) were successfully synthesized, and their potential application as antibacterial materials in water disinfection was investigated with particular attention given to the use of both white rice husk ash (WRHA) and black rice husk ash (BRHA) produced by the combustion of RHs as AgNP supports. AgNPs, with diameter of ∼20 nm, were anchored tightly onto RHA, with the emplacement of the AgNPs on these supports increasing the antibacterial activity of the AgNPs through diminution in the extent of nanoparticle aggregation. Ag K-edge XANES analysis revealed that AgNP-impregnated RHs/RHA are composed of both Ag(0) and Ag(I) species with the Ag(I)/Ag(0) ratio following the order WRHA (65:35) > RHs (59:41) > BRHA (7:93). Sodium thioglycolate, a strong Ag(I) ligand, significantly affected the bactericidal activities of AgNP-impregnated RHs/RHA, suggesting that Ag(I) released from AgNP-impregnated RHs/RHA plays an important role in disinfection. The rate constants of oxidative and dissociative dissolution of Ag(0) and Ag(I) species associated with BRHA are 5.0 × 10(-4) M(-1)s(-1) and 1.0 × 10(-5) s(-1), respectively, while those associated with WRHA are 7.0 × 10(-2) M(-1)s(-1) and 2.0 × 10(-4) s(-1) respectively, demonstrating that the rate of dissolution of silver associated with BRHA is particularly slow. As such, the bactericidal "lifetime" of this material is long and exhibits a lower health risk as a result of release of Ag(I) to consumers than does AgNP-impregnated WRHA.

DOI: 10.1021/es303890y
PubMed: 23614704

Links to Exploration step

pubmed:23614704

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash.</title>
<author>
<name sortKey="He, Di" sort="He, Di" uniqKey="He D" first="Di" last="He">Di He</name>
<affiliation>
<nlm:affiliation>School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ikeda Ohno, Atsushi" sort="Ikeda Ohno, Atsushi" uniqKey="Ikeda Ohno A" first="Atsushi" last="Ikeda-Ohno">Atsushi Ikeda-Ohno</name>
</author>
<author>
<name sortKey="Boland, Daniel D" sort="Boland, Daniel D" uniqKey="Boland D" first="Daniel D" last="Boland">Daniel D. Boland</name>
</author>
<author>
<name sortKey="Waite, T David" sort="Waite, T David" uniqKey="Waite T" first="T David" last="Waite">T David Waite</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23614704</idno>
<idno type="pmid">23614704</idno>
<idno type="doi">10.1021/es303890y</idno>
<idno type="wicri:Area/Main/Corpus">000936</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000936</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash.</title>
<author>
<name sortKey="He, Di" sort="He, Di" uniqKey="He D" first="Di" last="He">Di He</name>
<affiliation>
<nlm:affiliation>School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ikeda Ohno, Atsushi" sort="Ikeda Ohno, Atsushi" uniqKey="Ikeda Ohno A" first="Atsushi" last="Ikeda-Ohno">Atsushi Ikeda-Ohno</name>
</author>
<author>
<name sortKey="Boland, Daniel D" sort="Boland, Daniel D" uniqKey="Boland D" first="Daniel D" last="Boland">Daniel D. Boland</name>
</author>
<author>
<name sortKey="Waite, T David" sort="Waite, T David" uniqKey="Waite T" first="T David" last="Waite">T David Waite</name>
</author>
</analytic>
<series>
<title level="j">Environmental science & technology</title>
<idno type="eISSN">1520-5851</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Kinetics (MeSH)</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Microscopy, Electron, Transmission (MeSH)</term>
<term>Oryza (chemistry)</term>
<term>Photoelectron Spectroscopy (MeSH)</term>
<term>Silver (chemistry)</term>
<term>Solubility (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Silver</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Kinetics</term>
<term>Microscopy, Electron, Transmission</term>
<term>Photoelectron Spectroscopy</term>
<term>Solubility</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Silver nanoparticle (AgNP)-impregnated rice husks/rice hush ash (RHs/RHA) were successfully synthesized, and their potential application as antibacterial materials in water disinfection was investigated with particular attention given to the use of both white rice husk ash (WRHA) and black rice husk ash (BRHA) produced by the combustion of RHs as AgNP supports. AgNPs, with diameter of ∼20 nm, were anchored tightly onto RHA, with the emplacement of the AgNPs on these supports increasing the antibacterial activity of the AgNPs through diminution in the extent of nanoparticle aggregation. Ag K-edge XANES analysis revealed that AgNP-impregnated RHs/RHA are composed of both Ag(0) and Ag(I) species with the Ag(I)/Ag(0) ratio following the order WRHA (65:35) > RHs (59:41) > BRHA (7:93). Sodium thioglycolate, a strong Ag(I) ligand, significantly affected the bactericidal activities of AgNP-impregnated RHs/RHA, suggesting that Ag(I) released from AgNP-impregnated RHs/RHA plays an important role in disinfection. The rate constants of oxidative and dissociative dissolution of Ag(0) and Ag(I) species associated with BRHA are 5.0 × 10(-4) M(-1)s(-1) and 1.0 × 10(-5) s(-1), respectively, while those associated with WRHA are 7.0 × 10(-2) M(-1)s(-1) and 2.0 × 10(-4) s(-1) respectively, demonstrating that the rate of dissolution of silver associated with BRHA is particularly slow. As such, the bactericidal "lifetime" of this material is long and exhibits a lower health risk as a result of release of Ag(I) to consumers than does AgNP-impregnated WRHA.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23614704</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5851</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>47</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Environmental science & technology</Title>
<ISOAbbreviation>Environ Sci Technol</ISOAbbreviation>
</Journal>
<ArticleTitle>Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash.</ArticleTitle>
<Pagination>
<MedlinePgn>5276-84</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/es303890y</ELocationID>
<Abstract>
<AbstractText>Silver nanoparticle (AgNP)-impregnated rice husks/rice hush ash (RHs/RHA) were successfully synthesized, and their potential application as antibacterial materials in water disinfection was investigated with particular attention given to the use of both white rice husk ash (WRHA) and black rice husk ash (BRHA) produced by the combustion of RHs as AgNP supports. AgNPs, with diameter of ∼20 nm, were anchored tightly onto RHA, with the emplacement of the AgNPs on these supports increasing the antibacterial activity of the AgNPs through diminution in the extent of nanoparticle aggregation. Ag K-edge XANES analysis revealed that AgNP-impregnated RHs/RHA are composed of both Ag(0) and Ag(I) species with the Ag(I)/Ag(0) ratio following the order WRHA (65:35) > RHs (59:41) > BRHA (7:93). Sodium thioglycolate, a strong Ag(I) ligand, significantly affected the bactericidal activities of AgNP-impregnated RHs/RHA, suggesting that Ag(I) released from AgNP-impregnated RHs/RHA plays an important role in disinfection. The rate constants of oxidative and dissociative dissolution of Ag(0) and Ag(I) species associated with BRHA are 5.0 × 10(-4) M(-1)s(-1) and 1.0 × 10(-5) s(-1), respectively, while those associated with WRHA are 7.0 × 10(-2) M(-1)s(-1) and 2.0 × 10(-4) s(-1) respectively, demonstrating that the rate of dissolution of silver associated with BRHA is particularly slow. As such, the bactericidal "lifetime" of this material is long and exhibits a lower health risk as a result of release of Ag(I) to consumers than does AgNP-impregnated WRHA.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Di</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ikeda-Ohno</LastName>
<ForeName>Atsushi</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boland</LastName>
<ForeName>Daniel D</ForeName>
<Initials>DD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Waite</LastName>
<ForeName>T David</ForeName>
<Initials>TD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Environ Sci Technol</MedlineTA>
<NlmUniqueID>0213155</NlmUniqueID>
<ISSNLinking>0013-936X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>3M4G523W1G</RegistryNumber>
<NameOfSubstance UI="D012834">Silver</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053768" MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046529" MajorTopicYN="N">Microscopy, Electron, Transmission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056951" MajorTopicYN="N">Photoelectron Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012834" MajorTopicYN="N">Silver</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23614704</ArticleId>
<ArticleId IdType="doi">10.1021/es303890y</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Terre/explor/SilverBacteriV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000936 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000936 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Terre
   |area=    SilverBacteriV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23614704
   |texte=   Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23614704" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SilverBacteriV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 1 22:59:42 2021. Site generation: Mon Feb 1 23:01:29 2021